Spaces:
Running
Running
File size: 2,246 Bytes
dfa45b1 5f264bc dfa45b1 d2062a1 f4619cd b700bc7 aeb58f7 818de7f dfa45b1 dec5177 e04b550 dfa45b1 6a833cd dfa45b1 6a833cd dfa45b1 b1bfa22 f8bbfe3 dfa45b1 d2062a1 818de7f d2062a1 818de7f d2062a1 b1bfa22 5bbf5a8 c5b702c 818de7f 5bbf5a8 dfa45b1 f8bbfe3 dfa45b1 818de7f dfa45b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import os
from agent_langchain import agent_langchain
from agent_llamaindex import agent_llamaindex
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
AGENT_OFF = "Off"
AGENT_LANGCHAIN = "LangChain"
AGENT_LLAMAINDEX = "LlamaIndex"
config = {
"model": "gpt-4-0613",
"temperature": 0
}
def invoke(openai_api_key, prompt, agent_option):
if (openai_api_key == ""):
raise gr.Error("OpenAI API Key is required.")
if (prompt == ""):
raise gr.Error("Prompt is required.")
if (agent_option is None):
raise gr.Error("Use Agent is required.")
os.environ["OPENAI_API_KEY"] = openai_api_key
output = ""
try:
if (agent_option == AGENT_LANGCHAIN):
completion = agent_langchain(
config["model"],
config["temperature"],
prompt
)
output = completion["output"]
elif (agent_option == AGENT_LLAMAINDEX):
output = agent_llamaindex(
config["model"],
config["temperature"],
prompt
)
else:
client = OpenAI()
completion = client.chat.completions.create(
messages = [{"role": "user", "content": prompt}],
model = config["model"],
temperature = config["temperature"]
)
output = completion.choices[0].message.content
except Exception as e:
err_msg = e
raise gr.Error(e)
return output
gr.close_all()
demo = gr.Interface(
fn = invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
gr.Textbox(label = "Prompt", lines = 1, value = "How does current weather in San Francisco and Paris compare in metric and imperial system? Answer in JSON format and include today's date."),
gr.Radio([AGENT_OFF, AGENT_LANGCHAIN, AGENT_LLAMAINDEX], label = "Use Agent", value = AGENT_LANGCHAIN)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Real-Time Reasoning Application",
description = os.environ["DESCRIPTION"])
demo.launch() |