agentic-ai / app.py
bstraehle's picture
Update app.py
e80fbde
raw
history blame
2.32 kB
import gradio as gr
#from datetime import date
#from langchain.agents import tool
#from langchain.agents.agent_toolkits import create_python_agent
from langchain.agents import load_tools, initialize_agent
#from langchain.agents import AgentType
#from langchain.tools.python.tool import PythonREPLTool
#from langchain.python import PythonREPL
from langchain.chat_models import ChatOpenAI
config = {
"max_tokens": 1000,
"model_name": "gpt-4",
"temperature": 0,
}
#@tool
#def time(text: str) -> str:
# """Returns todays date, use this for any \
# questions related to knowing todays date. \
# The input should always be an empty string, \
# and this function will always return todays \
# date - any date mathmatics should occur \
# outside this function."""
# return str(date.today())
def invoke(openai_api_key, prompt):
if (openai_api_key == ""):
raise gr.Error("OpenAI API Key is required.")
if (prompt == ""):
raise gr.Error("Prompt is required.")
result = ""
try:
llm = ChatOpenAI(model_name = config["model_name"],
openai_api_key = openai_api_key,
temperature = config["temperature"])
tools = load_tools(["llm-math"], llm = llm)
#agent= initialize_agent(
# tools + [time],
# llm,
# agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
# handle_parsing_errors=True,
# verbose = True)
#result = agent(prompt)
#content = completion.choices[0].message.content
except Exception as e:
err_msg = e
raise gr.Error(e)
return result
description = """<a href='https://www.gradio.app/'>Gradio</a> UI using the <a href='https://openai.com/'>OpenAI</a> API
with <a href='https://openai.com/research/gpt-4'>gpt-4</a> model."""
gr.close_all()
demo = gr.Interface(fn = invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
gr.Textbox(label = "Prompt", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & Agent",
description = description,)
demo.launch()