import gradio as gr
from datetime import date
from langchain.agents import tool
from langchain.agents.agent_toolkits import create_python_agent
from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType
from langchain.tools.python.tool import PythonREPLTool
from langchain.python import PythonREPL
from langchain.chat_models import ChatOpenAI
config = {
"max_tokens": 1000,
"model": "gpt-4",
"temperature": 0,
}
@tool
def time(text: str) -> str:
"""Returns todays date, use this for any \
questions related to knowing todays date. \
The input should always be an empty string, \
and this function will always return todays \
date - any date mathmatics should occur \
outside this function."""
return str(date.today())
def invoke(openai_api_key, prompt):
if (openai_api_key == ""):
raise gr.Error("OpenAI API Key is required.")
if (prompt == ""):
raise gr.Error("Prompt is required.")
result = ""
try:
llm = ChatOpenAI(temperature=0, model="gpt-4")
tools = load_tools(["llm-math","wikipedia"], llm=llm)
agent= initialize_agent(
tools + [time],
llm,
agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
handle_parsing_errors=True,
verbose = True)
result = agent(prompt)
#content = completion.choices[0].message.content
except Exception as e:
err_msg = e
raise gr.Error(e)
return result
description = """Gradio UI using the OpenAI API
with gpt-4 model."""
gr.close_all()
demo = gr.Interface(fn = invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
gr.Textbox(label = "Prompt", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & Agent",
description = description,)
demo.launch()