File size: 1,847 Bytes
7d6d701 9621cc7 7d6d701 1ad0dcf 7d6d701 9ed9edc 7d6d701 9ed9edc 6b6cd79 7d6d701 21a5617 7d6d701 bef0bbf 341da3b 9ed9edc 7d6d701 48b3044 9ed9edc 48b3044 7d6d701 9ed9edc 7d6d701 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import shutil, openai, os
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#openai.api_key = os.environ["OPENAI_API_KEY"]
def invoke(openai_api_key, youtube_url, prompt):
openai.api_key = openai_api_key
url = youtube_url
save_dir = "docs/youtube/"
loader = GenericLoader(
YoutubeAudioLoader([url], save_dir),
OpenAIWhisperParser()
)
docs = loader.load()
shutil.rmtree(save_dir)
retrieval = docs[0].page_content
###
return retrieval
description = """The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data.
Enter an OpenAI API key, YouTube URL, and prompt to search the video, analyse its sentiment, summarize it, translate it, etc.
<a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
with foundation models <a href='https://openai.com/research/whisper'>Whisper</a> (speech to text) and
<a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM use cases) via AI-first toolkit <a href='https://www.langchain.com/'>LangChain</a>."""
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", lines = 1), gr.Textbox(label = "YouTube URL", lines = 1), gr.Textbox(label = "Prompt", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - RAG",
description = description)
demo.launch() |