File size: 6,576 Bytes
7d6d701 04a1583 7d6d701 0a1cd5f f4087b0 55274da f4087b0 55274da f4087b0 1ad0dcf 7d6d701 6a95bbc 7d6d701 a4da0c1 6f02f68 a4da0c1 e38fd6d a4da0c1 b610816 cd9c510 6553dbd 55274da 6772176 2db1016 994b8cd b12409c 9960268 dc12c17 a4da0c1 dc12c17 55274da 85e4f86 55274da 85e4f86 55274da 3764a07 55274da 85e4f86 55274da 85e4f86 55274da 85e4f86 2301c17 24b21f4 a4da0c1 eedb77b f6df106 0f74892 a4da0c1 e38fd6d f6df106 7d6d701 d9089fe 748053a d958889 6772176 459aa92 b3af0cf 3c3eb7e 43c7d33 724b37c bb3c29a 6a74b8f 6772176 ef1f591 c2ac894 7d6d701 1cb182c 3c3eb7e b7d5b27 908ded3 7d6d701 a4da0c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import gradio as gr
import openai, os
from langchain.chains import LLMChain, RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, WebBaseLoader
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#openai.api_key = os.environ["OPENAI_API_KEY"]
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say
"🔥 Thanks for using the app - Bernd Straehle." at the end of the answer. """
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: "
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: "
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"],
template = llm_template)
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"],
template = rag_template)
CHROMA_DIR = "/data/chroma"
YOUTUBE_DIR = "/data/youtube"
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf"
WEB_URL = "https://openai.com/research/gpt-4"
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE"
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE"
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ"
MODEL_NAME = "gpt-4"
def invoke(openai_api_key, use_rag, prompt):
llm = ChatOpenAI(model_name = MODEL_NAME,
openai_api_key = openai_api_key,
temperature = 0)
if (use_rag):
# Document loading
#docs = []
# Load PDF
#loader = PyPDFLoader(PDF_URL)
#docs.extend(loader.load())
# Load Web
#loader = WebBaseLoader(WEB_URL_1)
#docs.extend(loader.load())
# Load YouTube
#loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1,
# YOUTUBE_URL_2,
# YOUTUBE_URL_3], YOUTUBE_DIR),
# OpenAIWhisperParser())
#docs.extend(loader.load())
# Document splitting
#text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
# chunk_size = 1500)
#splits = text_splitter.split_documents(docs)
# Document storage
#vector_db = Chroma.from_documents(documents = splits,
# embedding = OpenAIEmbeddings(disallowed_special = ()),
# persist_directory = CHROMA_DIR)
# Document retrieval
vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
persist_directory = CHROMA_DIR)
rag_chain = RetrievalQA.from_chain_type(llm,
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
return_source_documents = True)
result = rag_chain({"query": prompt})
result = result["result"]
else:
chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT)
result = chain.run({"question": prompt})
return result
description = """<strong>Overview:</strong> The app demonstrates how to use a <strong>Large Language Model (LLM)</strong> with <strong>Retrieval Augmented Generation (RAG)</strong>
on <strong>external data</strong> (private/public & structured/unstructured).\n\n
<strong>Instructions:</strong> Enter an OpenAI API key and perform LLM use cases (semantic search, summarization, translation, etc.) on
<a href='""" + YOUTUBE_URL_1 + """'>YouTube</a>, <a href='""" + PDF_URL + """'>PDF</a>, and <a href='""" + WEB_URL + """'>Web</a>
<strong>GPT-4 data</strong> (created after training cutoff).
<ul style="list-style-type:square;">
<li>Set "Retrieval Augmented Generation" to "<strong>False</strong>" and submit prompt "What is GPT-4?" The LLM <strong>without</strong> RAG does not know the answer.</li>
<li>Set "Retrieval Augmented Generation" to "<strong>True</strong>" and submit prompt "What is GPT-4?" The LLM <strong>with</strong> RAG knows the answer.</li>
<li>Experiment with different prompts, e.g. "What are GPT-4's image capabilities in one word, three words, and one sentence?", "List GPT-4's exam scores and benchmark results.", or "Compare GPT-4 to GPT-3.5 in markdown table format."</li>
<li>Experiment some more, for example "What is the GPT-4 API's cost and rate limit? Answer in English, Arabic, Chinese, Hindi, and Russian in JSON format.", "Write a Python program calling the GPT-4 API.", or "Write a poem about GPT-4."</li>
</ul>\n\n
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://openai.com/'>OpenAI</a> API via AI-first
<a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='""" + WEB_URL + """'>GPT-4</a> foundation model and AI-native
<a href='https://www.trychroma.com/'>Chroma</a> embedding database. Speech-to-text via <a href='https://openai.com/research/whisper'>Whisper</a>
foundation model."""
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1),
gr.Radio([True, False], label="Retrieval Augmented Generation", value = False),
gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - LLM & RAG",
description = description)
demo.launch() |