|
import gradio as gr |
|
import openai, os, time, wandb |
|
|
|
from langchain.chains import LLMChain, RetrievalQA |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.document_loaders import PyPDFLoader, WebBaseLoader |
|
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader |
|
from langchain.document_loaders.generic import GenericLoader |
|
from langchain.document_loaders.parsers import OpenAIWhisperParser |
|
|
|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import Chroma |
|
from langchain.vectorstores import MongoDBAtlasVectorSearch |
|
|
|
from pymongo import MongoClient |
|
|
|
from wandb.sdk.data_types.trace_tree import Trace |
|
|
|
from dotenv import load_dotenv, find_dotenv |
|
_ = load_dotenv(find_dotenv()) |
|
|
|
WANDB_API_KEY = os.environ["WANDB_API_KEY"] |
|
|
|
MONGODB_URI = os.environ["MONGODB_ATLAS_CLUSTER_URI"] |
|
client = MongoClient(MONGODB_URI) |
|
MONGODB_DB_NAME = "langchain_db" |
|
MONGODB_COLLECTION_NAME = "gpt-4" |
|
MONGODB_COLLECTION = client[MONGODB_DB_NAME][MONGODB_COLLECTION_NAME] |
|
MONGODB_INDEX_NAME = "default" |
|
|
|
description = os.environ["DESCRIPTION"] |
|
|
|
config = { |
|
"chunk_overlap": 150, |
|
"chunk_size": 1500, |
|
"k": 3, |
|
"model": "gpt-4", |
|
"temperature": 0, |
|
"verbose": True |
|
} |
|
|
|
template = """If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say |
|
"🧠 Thanks for using the app - Bernd" at the end of the answer. """ |
|
|
|
llm_template = "Answer the question at the end. " + template + "Question: {question} Helpful Answer: " |
|
rag_template = "Use the following pieces of context to answer the question at the end. " + template + "{context} Question: {question} Helpful Answer: " |
|
|
|
LLM_CHAIN_PROMPT = PromptTemplate(input_variables = ["question"], |
|
template = llm_template) |
|
RAG_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], |
|
template = rag_template) |
|
|
|
CHROMA_DIR = "/data/chroma" |
|
YOUTUBE_DIR = "/data/youtube" |
|
|
|
PDF_URL = "https://arxiv.org/pdf/2303.08774.pdf" |
|
WEB_URL = "https://openai.com/research/gpt-4" |
|
YOUTUBE_URL_1 = "https://www.youtube.com/watch?v=--khbXchTeE" |
|
YOUTUBE_URL_2 = "https://www.youtube.com/watch?v=hdhZwyf24mE" |
|
YOUTUBE_URL_3 = "https://www.youtube.com/watch?v=vw-KWfKwvTQ" |
|
|
|
def document_loading_splitting(): |
|
|
|
docs = [] |
|
|
|
loader = PyPDFLoader(PDF_URL) |
|
docs.extend(loader.load()) |
|
|
|
loader = WebBaseLoader(WEB_URL) |
|
docs.extend(loader.load()) |
|
|
|
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_1, |
|
YOUTUBE_URL_2, |
|
YOUTUBE_URL_3], YOUTUBE_DIR), |
|
OpenAIWhisperParser()) |
|
docs.extend(loader.load()) |
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = config["chunk_overlap"], |
|
chunk_size = config["chunk_size"]) |
|
splits = text_splitter.split_documents(docs) |
|
return splits |
|
|
|
def document_storage_chroma(splits): |
|
Chroma.from_documents(documents = splits, |
|
embedding = OpenAIEmbeddings(disallowed_special = ()), |
|
persist_directory = CHROMA_DIR) |
|
|
|
def document_storage_mongodb(splits): |
|
MongoDBAtlasVectorSearch.from_documents(documents = splits, |
|
embedding = OpenAIEmbeddings(disallowed_special = ()), |
|
collection = MONGODB_COLLECTION, |
|
index_name = MONGODB_INDEX_NAME) |
|
|
|
def document_retrieval_chroma(llm, prompt): |
|
db = Chroma(embedding_function = OpenAIEmbeddings(), |
|
persist_directory = CHROMA_DIR) |
|
return db |
|
|
|
def document_retrieval_mongodb(llm, prompt): |
|
db = MongoDBAtlasVectorSearch.from_connection_string(MONGODB_URI, |
|
MONGODB_DB_NAME + "." + MONGODB_COLLECTION_NAME, |
|
OpenAIEmbeddings(disallowed_special = ()), |
|
index_name = MONGODB_INDEX_NAME) |
|
return db |
|
|
|
def llm_chain(llm, prompt): |
|
llm_chain = LLMChain(llm = llm, prompt = LLM_CHAIN_PROMPT) |
|
completion = llm_chain.run({"question": prompt}) |
|
return completion |
|
|
|
def rag_chain(llm, prompt, db): |
|
rag_chain = RetrievalQA.from_chain_type(llm, |
|
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT}, |
|
retriever = db.as_retriever(search_kwargs = {"k": config["k"]}), |
|
return_source_documents = True) |
|
completion = rag_chain({"query": prompt}) |
|
return completion |
|
|
|
def wandb_trace(rag_option, prompt, prompt_template, result, completion, chain_name, status_msg, start_time_ms, end_time_ms): |
|
wandb.init(project = "openai-llm-rag") |
|
trace = Trace( |
|
name = chain_name, |
|
kind = "chain", |
|
status_code = "SUCCESS" if (str(status_msg) == "") else "ERROR", |
|
status_message = str(status_msg), |
|
metadata={ |
|
"chunk_overlap": "" if (rag_option == "Off") else config["chunk_overlap"], |
|
"chunk_size": "" if (rag_option == "Off") else config["chunk_size"], |
|
"k": "" if (rag_option == "Off") else config["k"], |
|
"model": config["model"], |
|
"temperature": config["temperature"], |
|
"verbose": config["verbose"], |
|
}, |
|
start_time_ms = start_time_ms, |
|
end_time_ms = end_time_ms, |
|
inputs = {"rag_option": rag_option, "prompt": str(prompt), "prompt_template": str(prompt_template)}, |
|
outputs = {"result": str(result), "completion": str(completion)}, |
|
|
|
) |
|
trace.log("test") |
|
wandb.finish() |
|
|
|
def invoke(openai_api_key, rag_option, prompt): |
|
if (openai_api_key == ""): |
|
raise gr.Error("OpenAI API Key is required.") |
|
if (rag_option is None): |
|
raise gr.Error("Retrieval Augmented Generation is required.") |
|
if (prompt == ""): |
|
raise gr.Error("Prompt is required.") |
|
completion = "" |
|
result = "" |
|
prompt_template = "" |
|
chain_name = "" |
|
status_msg = "" |
|
try: |
|
start_time_ms = round(time.time() * 1000) |
|
llm = ChatOpenAI(model_name = config["model"], |
|
openai_api_key = openai_api_key, |
|
temperature = config["temperature"], |
|
verbose = config["verbose"]) |
|
if (rag_option == "Chroma"): |
|
|
|
|
|
db = document_retrieval_chroma(llm, prompt) |
|
completion = rag_chain(llm, prompt, db) |
|
result = completion["result"] |
|
prompt_template = rag_template |
|
chain_name = "RetrievalQA" |
|
elif (rag_option == "MongoDB"): |
|
|
|
|
|
db = document_retrieval_mongodb(llm, prompt) |
|
completion = rag_chain(llm, prompt, db) |
|
result = completion["result"] |
|
prompt_template = rag_template |
|
chain_name = "RetrievalQA" |
|
else: |
|
result = llm_chain(llm, prompt) |
|
prompt_template = llm_template |
|
chain_name = "LLMChain" |
|
except Exception as e: |
|
status_msg = e |
|
raise gr.Error(e) |
|
finally: |
|
end_time_ms = round(time.time() * 1000) |
|
wandb_trace(rag_option, prompt, prompt_template, result, completion, chain_name, status_msg, start_time_ms, end_time_ms) |
|
return result |
|
|
|
gr.close_all() |
|
demo = gr.Interface(fn=invoke, |
|
inputs = [gr.Textbox(label = "OpenAI API Key", value = "sk-", lines = 1), |
|
gr.Radio(["Off", "Chroma", "MongoDB"], label="Retrieval Augmented Generation", value = "Off"), |
|
gr.Textbox(label = "Prompt", value = "What is GPT-4?", lines = 1)], |
|
outputs = [gr.Textbox(label = "Completion", lines = 1)], |
|
title = "Generative AI - LLM & RAG", |
|
description = description) |
|
demo.launch() |