bstraehle commited on
Commit
296a54b
·
1 Parent(s): 5917f38

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -6
app.py CHANGED
@@ -25,23 +25,22 @@ QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], temp
25
  YOUTUBE_DIR = "docs/youtube/"
26
  CHROMA_DIR = "docs/chroma/"
27
 
 
 
28
  def invoke(openai_api_key, youtube_url, prompt):
29
  openai.api_key = openai_api_key
30
- global qa_chain
31
  if (os.path.isdir(CHROMA_DIR) == False):
32
- print(1)
33
- #youtube_dir = "docs/youtube/"
34
  loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
35
  docs = loader.load()
36
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
37
  splits = text_splitter.split_documents(docs)
38
- #chroma_dir = "docs/chroma/"
39
  vectordb = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
40
  llm = ChatOpenAI(model_name = "gpt-4", temperature = 0)
41
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vectordb.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
42
- print(2)
43
  result = qa_chain({"query": prompt})
44
- #shutil.rmtree(YOUTUBE_DIR)
45
  #shutil.rmtree(CHROMA_DIR)
46
  return result["result"]
47
 
 
25
  YOUTUBE_DIR = "docs/youtube/"
26
  CHROMA_DIR = "docs/chroma/"
27
 
28
+ shutil.rmtree(CHROMA_DIR)
29
+
30
  def invoke(openai_api_key, youtube_url, prompt):
31
  openai.api_key = openai_api_key
 
32
  if (os.path.isdir(CHROMA_DIR) == False):
33
+ print(111)
 
34
  loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
35
  docs = loader.load()
36
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
37
  splits = text_splitter.split_documents(docs)
 
38
  vectordb = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
39
  llm = ChatOpenAI(model_name = "gpt-4", temperature = 0)
40
  qa_chain = RetrievalQA.from_chain_type(llm, retriever = vectordb.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
41
+ print(222)
42
  result = qa_chain({"query": prompt})
43
+ shutil.rmtree(YOUTUBE_DIR)
44
  #shutil.rmtree(CHROMA_DIR)
45
  return result["result"]
46