Update app.py
Browse files
app.py
CHANGED
@@ -25,23 +25,22 @@ QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], temp
|
|
25 |
YOUTUBE_DIR = "docs/youtube/"
|
26 |
CHROMA_DIR = "docs/chroma/"
|
27 |
|
|
|
|
|
28 |
def invoke(openai_api_key, youtube_url, prompt):
|
29 |
openai.api_key = openai_api_key
|
30 |
-
global qa_chain
|
31 |
if (os.path.isdir(CHROMA_DIR) == False):
|
32 |
-
print(
|
33 |
-
#youtube_dir = "docs/youtube/"
|
34 |
loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
|
35 |
docs = loader.load()
|
36 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
|
37 |
splits = text_splitter.split_documents(docs)
|
38 |
-
#chroma_dir = "docs/chroma/"
|
39 |
vectordb = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
40 |
llm = ChatOpenAI(model_name = "gpt-4", temperature = 0)
|
41 |
qa_chain = RetrievalQA.from_chain_type(llm, retriever = vectordb.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|
42 |
-
print(
|
43 |
result = qa_chain({"query": prompt})
|
44 |
-
|
45 |
#shutil.rmtree(CHROMA_DIR)
|
46 |
return result["result"]
|
47 |
|
|
|
25 |
YOUTUBE_DIR = "docs/youtube/"
|
26 |
CHROMA_DIR = "docs/chroma/"
|
27 |
|
28 |
+
shutil.rmtree(CHROMA_DIR)
|
29 |
+
|
30 |
def invoke(openai_api_key, youtube_url, prompt):
|
31 |
openai.api_key = openai_api_key
|
|
|
32 |
if (os.path.isdir(CHROMA_DIR) == False):
|
33 |
+
print(111)
|
|
|
34 |
loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser())
|
35 |
docs = loader.load()
|
36 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150)
|
37 |
splits = text_splitter.split_documents(docs)
|
|
|
38 |
vectordb = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR)
|
39 |
llm = ChatOpenAI(model_name = "gpt-4", temperature = 0)
|
40 |
qa_chain = RetrievalQA.from_chain_type(llm, retriever = vectordb.as_retriever(), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT})
|
41 |
+
print(222)
|
42 |
result = qa_chain({"query": prompt})
|
43 |
+
shutil.rmtree(YOUTUBE_DIR)
|
44 |
#shutil.rmtree(CHROMA_DIR)
|
45 |
return result["result"]
|
46 |
|