Update app.py
Browse files
app.py
CHANGED
@@ -42,17 +42,17 @@ def invoke(openai_api_key, use_rag, prompt):
|
|
42 |
temperature = 0)
|
43 |
if (use_rag):
|
44 |
# Document loading, splitting, and storage
|
45 |
-
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_01,
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
docs = loader.load()
|
50 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
|
51 |
-
|
52 |
-
splits = text_splitter.split_documents(docs)
|
53 |
-
vector_db = Chroma.from_documents(documents = splits,
|
54 |
-
|
55 |
-
|
56 |
# Document retrieval
|
57 |
vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
|
58 |
persist_directory = CHROMA_DIR)
|
|
|
42 |
temperature = 0)
|
43 |
if (use_rag):
|
44 |
# Document loading, splitting, and storage
|
45 |
+
#loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL_01,
|
46 |
+
# YOUTUBE_URL_02,
|
47 |
+
# YOUTUBE_URL_03], YOUTUBE_DIR),
|
48 |
+
# OpenAIWhisperParser())
|
49 |
+
#docs = loader.load()
|
50 |
+
#text_splitter = RecursiveCharacterTextSplitter(chunk_overlap = 150,
|
51 |
+
# chunk_size = 1500)
|
52 |
+
#splits = text_splitter.split_documents(docs)
|
53 |
+
#vector_db = Chroma.from_documents(documents = splits,
|
54 |
+
# embedding = OpenAIEmbeddings(),
|
55 |
+
# persist_directory = CHROMA_DIR)
|
56 |
# Document retrieval
|
57 |
vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
|
58 |
persist_directory = CHROMA_DIR)
|