Update app.py
Browse files
app.py
CHANGED
@@ -45,7 +45,7 @@ def invoke(openai_api_key, use_rag, prompt):
|
|
45 |
if (os.path.isdir(CHROMA_DIR)):
|
46 |
vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
|
47 |
persist_directory = CHROMA_DIR)
|
48 |
-
print(
|
49 |
else:
|
50 |
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR),
|
51 |
OpenAIWhisperParser())
|
@@ -56,7 +56,7 @@ def invoke(openai_api_key, use_rag, prompt):
|
|
56 |
vector_db = Chroma.from_documents(documents = splits,
|
57 |
embedding = OpenAIEmbeddings(),
|
58 |
persist_directory = CHROMA_DIR)
|
59 |
-
print(
|
60 |
rag_chain = RetrievalQA.from_chain_type(llm,
|
61 |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
62 |
retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
|
|
|
45 |
if (os.path.isdir(CHROMA_DIR)):
|
46 |
vector_db = Chroma(embedding_function = OpenAIEmbeddings(),
|
47 |
persist_directory = CHROMA_DIR)
|
48 |
+
print("Load DB")
|
49 |
else:
|
50 |
loader = GenericLoader(YoutubeAudioLoader([YOUTUBE_URL], YOUTUBE_DIR),
|
51 |
OpenAIWhisperParser())
|
|
|
56 |
vector_db = Chroma.from_documents(documents = splits,
|
57 |
embedding = OpenAIEmbeddings(),
|
58 |
persist_directory = CHROMA_DIR)
|
59 |
+
print("Make DB")
|
60 |
rag_chain = RetrievalQA.from_chain_type(llm,
|
61 |
chain_type_kwargs = {"prompt": RAG_CHAIN_PROMPT},
|
62 |
retriever = vector_db.as_retriever(search_kwargs = {"k": 3}),
|