Update app.py
Browse files
app.py
CHANGED
@@ -47,13 +47,19 @@ def invoke(openai_api_key, youtube_url, process_video, prompt):
|
|
47 |
#print(result)
|
48 |
return result["result"]
|
49 |
|
50 |
-
description = """<strong>Overview:</strong> The app demonstrates how to use a <strong>Large Language Model</strong> (LLM) with <strong>Retrieval Augmented Generation
|
51 |
-
</strong> (RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured private/public
|
52 |
-
<a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>)
|
53 |
-
<strong>Instructions:</strong> Enter an OpenAI API key, YouTube URL, and prompt to perform semantic search, sentiment analysis, summarization,
|
54 |
-
translation, etc.
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
|
58 |
via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text)
|
59 |
and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native
|
|
|
47 |
#print(result)
|
48 |
return result["result"]
|
49 |
|
50 |
+
description = """<strong>Overview:</strong> The app demonstrates how to use a <strong>Large Language Model</strong> (LLM) with <strong>Retrieval Augmented Generation
|
51 |
+
</strong> (RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured and private/public
|
52 |
+
<a href='https://raw.githubusercontent.com/bstraehle/ai-ml-dl/c38b224c196fc984aab6b6cc6bdc666f8f4fbcff/langchain/document-loaders.png'>data sources</a>).
|
53 |
+
\n\n<strong>Instructions:</strong> Enter an OpenAI API key, YouTube URL, and prompt to perform semantic search, sentiment analysis, summarization,
|
54 |
+
translation, etc.
|
55 |
+
<ol>
|
56 |
+
<li>Submit prompt "what is gpt-4". The LLM without RAG does not know the answer.</li>
|
57 |
+
<li>Select "Process Video" equals "True" and submit prompt "what is gpt-4". The LLM with RAG knows the answer.</li>
|
58 |
+
<li>Experiment with different prompts, for example "what is gpt-4, answer in german" or "write a haiku about gpt-4".</li>
|
59 |
+
</ol>
|
60 |
+
In a production system processing external data is done in a batch process, while prompting is done in a user interaction.\n\nA sample system could load
|
61 |
+
all <a href='https://www.youtube.com/playlist?list=PL2yQDdvlhXf_hIzmfHCdbcXj2hS52oP9r'>AWS re:Invent 2022</a> YouTube videos and enable LLM use cases
|
62 |
+
related to them.\n\n
|
63 |
<strong>Technology:</strong> <a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://platform.openai.com/'>OpenAI</a> API
|
64 |
via AI-first <a href='https://www.langchain.com/'>LangChain</a> toolkit with <a href='https://openai.com/research/whisper'>Whisper</a> (speech-to-text)
|
65 |
and <a href='https://openai.com/research/gpt-4'>GPT-4</a> (LLM) foundation models as well as AI-native
|