import gradio as gr import shutil, openai, os from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader from langchain.document_loaders.generic import GenericLoader from langchain.document_loaders.parsers import OpenAIWhisperParser from langchain.embeddings.openai import OpenAIEmbeddings from langchain.prompts import PromptTemplate from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) #openai.api_key = os.environ["OPENAI_API_KEY"] template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Keep the answer as concise as possible. Always say "🔥 Thanks for using the app - Bernd Straehle." at the end of the answer. {context} Question: {question} Helpful Answer: """ QA_CHAIN_PROMPT = PromptTemplate(input_variables = ["context", "question"], template = template) CHROMA_DIR = "docs/chroma" YOUTUBE_DIR = "docs/youtube" MODEL_NAME = "gpt-4" def invoke(openai_api_key, youtube_url, process_video, prompt): openai.api_key = openai_api_key if (process_video): if (os.path.isdir(CHROMA_DIR)): shutil.rmtree(CHROMA_DIR) if (os.path.isdir(YOUTUBE_DIR)): shutil.rmtree(YOUTUBE_DIR) loader = GenericLoader(YoutubeAudioLoader([youtube_url], YOUTUBE_DIR), OpenAIWhisperParser()) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size = 1500, chunk_overlap = 150) splits = text_splitter.split_documents(docs) vector_db = Chroma.from_documents(documents = splits, embedding = OpenAIEmbeddings(), persist_directory = CHROMA_DIR) else: vector_db = Chroma(persist_directory = CHROMA_DIR, embedding_function = OpenAIEmbeddings()) llm = ChatOpenAI(model_name = MODEL_NAME, temperature = 0) qa_chain = RetrievalQA.from_chain_type(llm, retriever = vector_db.as_retriever(search_kwargs = {"k": 3}), return_source_documents = True, chain_type_kwargs = {"prompt": QA_CHAIN_PROMPT}) result = qa_chain({"query": prompt}) #print(result) return result["result"] description = """Overview: The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data (YouTube videos in this case, but it could be PDFs, URLs, databases, or other structured/unstructured private/public data sources).\n\n Instructions: Enter an OpenAI API key and perform LLM use cases (semantic search, sentiment analysis, summarization, translation, etc.)