import gradio as gr
import shutil, openai, os
from langchain.document_loaders.generic import GenericLoader
from langchain.document_loaders.parsers import OpenAIWhisperParser
from langchain.document_loaders.blob_loaders.youtube_audio import YoutubeAudioLoader
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
#openai.api_key = os.environ["OPENAI_API_KEY"]
def invoke(openai_api_key, youtube_url, prompt):
openai.api_key = openai_api_key
url = youtube_url
save_dir = "docs/youtube/"
loader = GenericLoader(
YoutubeAudioLoader([url], save_dir),
OpenAIWhisperParser()
)
docs = loader.load()
shutil.rmtree(save_dir)
retrieval = docs[0].page_content
###
return retrieval
description = """The app demonstrates how to use a Large Language Model (LLM) with Retrieval Augmented Generation (RAG) on external data.\n\n
Enter an OpenAI API key, YouTube URL, and prompt - search the video, analyse its sentiment, summarize it, translate it, etc.\n\n
Gradio UI using OpenAI API
with Whisper (speech to text) and
GPT-4 (LLM use cases) foundation models
via AI-first toolkit LangChain."""
gr.close_all()
demo = gr.Interface(fn=invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", lines = 1), gr.Textbox(label = "YouTube URL", lines = 1), gr.Textbox(label = "Prompt", lines = 1)],
outputs = [gr.Textbox(label = "Completion", lines = 1)],
title = "Generative AI - RAG",
description = description)
demo.launch()