bstraehle commited on
Commit
cf215da
·
1 Parent(s): 2103668

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -19
app.py CHANGED
@@ -10,7 +10,6 @@ wandb_api_key = os.environ["WANDB_API_KEY"]
10
 
11
  config = {
12
  "max_output_tokens": 800,
13
- #"model": "text-bison@001",
14
  "model": "gemini-pro",
15
  "temperature": 0.1,
16
  "top_k": 40,
@@ -30,8 +29,6 @@ vertexai.init(project = project,
30
  credentials = credentials
31
  )
32
 
33
- #from vertexai.language_models import TextGenerationModel
34
- #generation_model = TextGenerationModel.from_pretrained(config["model"])
35
  from vertexai.preview.generative_models import GenerativeModel
36
  generation_model = GenerativeModel(config["model"])
37
 
@@ -44,39 +41,38 @@ def wandb_log(prompt, completion):
44
  def invoke(prompt):
45
  if (prompt == ""):
46
  raise gr.Error("Prompt is required.")
 
47
  completion = ""
 
48
  try:
49
- #completion = generation_model.predict(prompt = prompt,
50
- # max_output_tokens = config["max_output_tokens"],
51
- # temperature = config["temperature"],
52
- # top_k = config["top_k"],
53
- # top_p = config["top_p"],
54
- # )
55
- #if (completion.text != None):
56
- # completion = completion.text
57
- completion = generation_model.generate_content(prompt, generation_config = {
58
- "max_output_tokens": config["max_output_tokens"],
59
- "temperature": config["temperature"],
60
- "top_k": config["top_k"],
61
- "top_p": config["top_p"],
62
- })
63
  if (completion.text != None):
64
  completion = completion.text
65
  except Exception as e:
66
  completion = e
 
67
  raise gr.Error(e)
68
  finally:
69
  wandb_log(prompt, completion)
 
70
  return completion
71
- #return "🛑 Execution is commented out. To view the source code see https://huggingface.co/spaces/bstraehle/google-vertex-ai-llm/tree/main."
72
 
73
  description = """<a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://cloud.google.com/vertex-ai?hl=en/'>Google Vertex AI</a> API
74
  with gemini-pro foundation model. RAG evaluation via <a href='https://wandb.ai/bstraehle'>Weights & Biases</a>."""
75
 
76
  gr.close_all()
77
- demo = gr.Interface(fn=invoke,
 
78
  inputs = [gr.Textbox(label = "Prompt", lines = 1)],
79
  outputs = [gr.Textbox(label = "Completion", lines = 1)],
80
  title = "Generative AI - LLM",
81
  description = description)
 
82
  demo.launch()
 
10
 
11
  config = {
12
  "max_output_tokens": 800,
 
13
  "model": "gemini-pro",
14
  "temperature": 0.1,
15
  "top_k": 40,
 
29
  credentials = credentials
30
  )
31
 
 
 
32
  from vertexai.preview.generative_models import GenerativeModel
33
  generation_model = GenerativeModel(config["model"])
34
 
 
41
  def invoke(prompt):
42
  if (prompt == ""):
43
  raise gr.Error("Prompt is required.")
44
+
45
  completion = ""
46
+
47
  try:
48
+ completion = generation_model.generate_content(prompt,
49
+ generation_config = {
50
+ "max_output_tokens": config["max_output_tokens"],
51
+ "temperature": config["temperature"],
52
+ "top_k": config["top_k"],
53
+ "top_p": config["top_p"],
54
+ })
55
+
 
 
 
 
 
 
56
  if (completion.text != None):
57
  completion = completion.text
58
  except Exception as e:
59
  completion = e
60
+
61
  raise gr.Error(e)
62
  finally:
63
  wandb_log(prompt, completion)
64
+
65
  return completion
 
66
 
67
  description = """<a href='https://www.gradio.app/'>Gradio</a> UI using <a href='https://cloud.google.com/vertex-ai?hl=en/'>Google Vertex AI</a> API
68
  with gemini-pro foundation model. RAG evaluation via <a href='https://wandb.ai/bstraehle'>Weights & Biases</a>."""
69
 
70
  gr.close_all()
71
+
72
+ demo = gr.Interface(fn = invoke,
73
  inputs = [gr.Textbox(label = "Prompt", lines = 1)],
74
  outputs = [gr.Textbox(label = "Completion", lines = 1)],
75
  title = "Generative AI - LLM",
76
  description = description)
77
+
78
  demo.launch()