Spaces:
Build error
Build error
# Copyright 2020 The HuggingFace Evaluate Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" classification_report metric. """ | |
from typing import Optional | |
import sklearn | |
import evaluate | |
import datasets | |
class ClassificationReportModule(evaluate.Metric): | |
""" | |
Local metric used for classification task based on sklearn classiication_report(). | |
a classification report is a simple tool to compute multiple metrics such as: | |
- accuracy | |
- precision/recall/f1-score by class. | |
- mean/weighted average. | |
""" | |
def _info(self) -> evaluate.MetricInfo: | |
return evaluate.MetricInfo( | |
description="Metric based on sklearn classification_report() method.", | |
citation="", | |
inputs_description="", | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Sequence(datasets.Value("int32")), | |
"references": datasets.Sequence(datasets.Value("int32")), | |
} | |
if self.config_name == "multilabel" | |
else { | |
"predictions": datasets.Value("int32"), | |
"references": datasets.Value("int32"), | |
} | |
), | |
reference_urls=[""], | |
) | |
def _compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]: | |
return sklearn.metrics.classification_report(references, predictions) | |