jplu commited on
Commit
2422221
1 Parent(s): 802402b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -25,8 +25,8 @@ Build a text report showing the main classification metrics that are accuracy, p
25
  At minimum, this metric requires predictions and references as inputs.
26
 
27
  ```python
28
- >>> accuracy_metric = evaluate.load("accuracy")
29
- >>> results = accuracy_metric.compute(references=[0, 1], predictions=[0, 1])
30
  >>> print(results)
31
  {'0': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1}, '1': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1}, 'accuracy': 1.0, 'macro avg': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}, 'weighted avg': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}}
32
  ```
@@ -65,8 +65,8 @@ Output Example(s):
65
 
66
  Simple Example:
67
  ```python
68
- >>> accuracy_metric = evaluate.load("bstrai/classification_report")
69
- >>> results = accuracy_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0])
70
  >>> print(results)
71
  {'0': {'precision': 0.5, 'recall': 0.5, 'f1-score': 0.5, 'support': 2}, '1': {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}, '2': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2}, 'accuracy': 0.5, 'macro avg': {'precision': 0.38888888888888884, 'recall': 0.5, 'f1-score': 0.43333333333333335, 'support': 6}, 'weighted avg': {'precision': 0.38888888888888884, 'recall': 0.5, 'f1-score': 0.43333333333333335, 'support': 6}}
72
  ```
 
25
  At minimum, this metric requires predictions and references as inputs.
26
 
27
  ```python
28
+ >>> classification_report_metric = evaluate.load("bstrai/classification_report")
29
+ >>> results = classification_report_metric.compute(references=[0, 1], predictions=[0, 1])
30
  >>> print(results)
31
  {'0': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1}, '1': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 1}, 'accuracy': 1.0, 'macro avg': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}, 'weighted avg': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 2}}
32
  ```
 
65
 
66
  Simple Example:
67
  ```python
68
+ >>> classification_report_metric = evaluate.load("bstrai/classification_report")
69
+ >>> results = classification_report_metric.compute(references=[0, 1, 2, 0, 1, 2], predictions=[0, 1, 1, 2, 1, 0])
70
  >>> print(results)
71
  {'0': {'precision': 0.5, 'recall': 0.5, 'f1-score': 0.5, 'support': 2}, '1': {'precision': 0.6666666666666666, 'recall': 1.0, 'f1-score': 0.8, 'support': 2}, '2': {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 2}, 'accuracy': 0.5, 'macro avg': {'precision': 0.38888888888888884, 'recall': 0.5, 'f1-score': 0.43333333333333335, 'support': 6}, 'weighted avg': {'precision': 0.38888888888888884, 'recall': 0.5, 'f1-score': 0.43333333333333335, 'support': 6}}
72
  ```