|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from rapidfuzz.distance import Levenshtein, JaroWinkler |
|
from sentence_transformers import SentenceTransformer, util |
|
from typing import List |
|
import zipfile |
|
import os |
|
import io |
|
from gradio_huggingfacehub_search import HuggingfaceHubSearch |
|
from matheel.similarity import get_sim_list, calculate_similarity |
|
|
|
def calculate_similarity_gradio(code1, code2, Ws, Wl, Wj, model_name): |
|
result = calculate_similarity(code1, code2, Ws, Wl, Wj, model_name) |
|
|
|
return "The similarity score between the two codes is: %.2f" % result |
|
|
|
def get_sim_list_gradio(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results): |
|
result = get_sim_list(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results) |
|
return result |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
|
with gr.Tab("Code Pair Similarity"): |
|
|
|
code1 = gr.Textbox(label="Code 1") |
|
code2 = gr.Textbox(label="Code 2") |
|
|
|
model_dropdown = HuggingfaceHubSearch( |
|
label="Pre-Trained Model to use for Embeddings", |
|
placeholder="Search for Pre-Trained models on Hugging Face", |
|
search_type="model", |
|
) |
|
|
|
|
|
with gr.Accordion("Feature Weights", open=False): |
|
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1) |
|
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1) |
|
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1) |
|
|
|
|
|
|
|
output = gr.Textbox(label="Similarity Score") |
|
|
|
def update_weights(Ws, Wl, Wj): |
|
total = Ws + Wl + Wj |
|
if total != 1: |
|
Wj = 1 - (Ws + Wl) |
|
return Ws, Wl, Wj |
|
|
|
|
|
Ws.change(update_weights, [Ws, Wl, Wj], [Ws, Wl, Wj]) |
|
Wl.change(update_weights, [Ws, Wl, Wj], [Ws, Wl, Wj]) |
|
Wj.change(update_weights, [Ws, Wl, Wj], [Ws, Wl, Wj]) |
|
|
|
|
|
calculate_btn = gr.Button("Calculate Similarity") |
|
calculate_btn.click(calculate_similarity_gradio, inputs=[code1, code2, Ws, Wl, Wj, model_dropdown], outputs=output) |
|
|
|
|
|
with gr.Tab("Code Collection Pair Similarity"): |
|
|
|
file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"]) |
|
|
|
model_dropdown = HuggingfaceHubSearch( |
|
label="Pre-Trained Model to use for Embeddings", |
|
placeholder="Search for Pre-Trained models on Hugging Face", |
|
search_type="model", |
|
) |
|
|
|
with gr.Accordion("Feature Weights and Parameters", open=False): |
|
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1) |
|
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1) |
|
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1) |
|
|
|
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01) |
|
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1) |
|
|
|
|
|
df_output = gr.Dataframe(label="Results") |
|
|
|
|
|
process_btn = gr.Button("Process File") |
|
process_btn.click(get_sim_list, inputs=[file_uploader, Ws, Wl, Wj, model_dropdown,threshold,number_results], outputs=df_output) |
|
|
|
|
|
demo.launch(show_error=True,debug=True) |