Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ from typing import List
|
|
8 |
import zipfile
|
9 |
import os
|
10 |
import io
|
|
|
|
|
11 |
|
12 |
def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
|
13 |
model = SentenceTransformer(model_name)
|
@@ -20,83 +22,12 @@ def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
|
|
20 |
|
21 |
return "The similarity score between the two codes is: %.2f" % overall_similarity
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
file_names = []
|
26 |
-
codes = []
|
27 |
-
|
28 |
-
# Handle .zip files
|
29 |
-
if file_path.endswith('.zip'):
|
30 |
-
with zipfile.ZipFile(file_path, 'r') as z:
|
31 |
-
file_names = z.namelist()
|
32 |
-
codes = [z.read(file).decode('utf-8', errors='ignore') for file in file_names]
|
33 |
-
|
34 |
-
else:
|
35 |
-
raise ValueError("Unsupported file type. Only .zip is supported.")
|
36 |
-
|
37 |
-
return file_names, codes
|
38 |
-
|
39 |
-
def filter_and_return_top(df, similarity_threshold,returned_results):
|
40 |
-
filtered_df = df[df['similarity_score'] > similarity_threshold]
|
41 |
-
return filtered_df.head(returned_results)
|
42 |
-
|
43 |
-
# Perform paraphrase mining with the specified weights
|
44 |
-
def perform_paraphrase_mining(model, codes_list, weight_semantic, weight_levenshtein, weight_jaro_winkler):
|
45 |
-
return paraphrase_mining_with_combined_score(
|
46 |
-
model,
|
47 |
-
codes_list,
|
48 |
-
weight_semantic=weight_semantic,
|
49 |
-
weight_levenshtein=weight_levenshtein,
|
50 |
-
weight_jaro_winkler=weight_jaro_winkler
|
51 |
-
)
|
52 |
-
|
53 |
-
def paraphrase_mining_with_combined_score(
|
54 |
-
model,
|
55 |
-
sentences: List[str],
|
56 |
-
show_progress_bar: bool = False,
|
57 |
-
weight_semantic: float = 1.0,
|
58 |
-
weight_levenshtein: float = 0.0,
|
59 |
-
weight_jaro_winkler: float = 0.0
|
60 |
-
):
|
61 |
-
embeddings = model.encode(
|
62 |
-
sentences, show_progress_bar=show_progress_bar, convert_to_tensor=True)
|
63 |
-
paraphrases = util.paraphrase_mining_embeddings(embeddings, score_function=util.cos_sim)
|
64 |
-
|
65 |
-
results = []
|
66 |
-
for score, i, j in paraphrases:
|
67 |
-
lev_ratio = Levenshtein.normalized_similarity(sentences[i], sentences[j])
|
68 |
-
jaro_winkler_ratio = JaroWinkler.normalized_similarity(sentences[i], sentences[j])
|
69 |
-
|
70 |
-
combined_score = (weight_semantic * score) + \
|
71 |
-
(weight_levenshtein * lev_ratio) + \
|
72 |
-
(weight_jaro_winkler * jaro_winkler_ratio)
|
73 |
-
|
74 |
-
results.append([combined_score, i, j])
|
75 |
-
|
76 |
-
results = sorted(results, key=lambda x: x[0], reverse=True)
|
77 |
-
return results
|
78 |
-
|
79 |
-
def get_sim_list(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results):
|
80 |
-
file_names, codes = extract_and_read_compressed_file(zipped_file)
|
81 |
-
model = SentenceTransformer(model_name)
|
82 |
-
code_pairs = perform_paraphrase_mining(model, codes,Ws, Wl, Wj)
|
83 |
-
pairs_results = []
|
84 |
-
|
85 |
-
for score, i, j in code_pairs:
|
86 |
-
pairs_results.append({
|
87 |
-
'file_name_1': file_names[i],
|
88 |
-
'file_name_2': file_names[j],
|
89 |
-
'similarity_score': score
|
90 |
-
})
|
91 |
-
|
92 |
-
similarity_df = pd.concat([pd.DataFrame(pairs_results)], ignore_index=True)
|
93 |
-
similarity_df = similarity_df.sort_values(by='similarity_score', ascending=False)
|
94 |
-
result = filter_and_return_top(similarity_df,threshold,number_results).round(2)
|
95 |
-
|
96 |
return result
|
97 |
|
98 |
# Define the Gradio app
|
99 |
-
with gr.Blocks(
|
100 |
# Tab for similarity calculation
|
101 |
with gr.Tab("Code Pair Similarity"):
|
102 |
# Input components
|
@@ -108,15 +39,11 @@ with gr.Blocks(theme=gr.themes.Glass()) as demo:
|
|
108 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
109 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
110 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
111 |
-
model_dropdown =
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
("CodeT5 small", "Salesforce/codet5-small"),
|
117 |
-
("PLBART", "uclanlp/plbart-java-cs"),],
|
118 |
-
label="Select Model",
|
119 |
-
value= "uclanlp/plbart-java-cs"
|
120 |
)
|
121 |
|
122 |
# Output component
|
@@ -146,15 +73,11 @@ with gr.Blocks(theme=gr.themes.Glass()) as demo:
|
|
146 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
147 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
148 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
149 |
-
model_dropdown =
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
("CodeT5 small", "Salesforce/codet5-small"),
|
155 |
-
("PLBART", "uclanlp/plbart-java-cs"),],
|
156 |
-
label="Select Model",
|
157 |
-
value= "uclanlp/plbart-java-cs"
|
158 |
)
|
159 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
160 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|
|
|
8 |
import zipfile
|
9 |
import os
|
10 |
import io
|
11 |
+
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
12 |
+
from matheel.similarity import get_sim_list
|
13 |
|
14 |
def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
|
15 |
model = SentenceTransformer(model_name)
|
|
|
22 |
|
23 |
return "The similarity score between the two codes is: %.2f" % overall_similarity
|
24 |
|
25 |
+
def get_sim_list_gradio(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results):
|
26 |
+
result = get_sim_list(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return result
|
28 |
|
29 |
# Define the Gradio app
|
30 |
+
with gr.Blocks() as demo:
|
31 |
# Tab for similarity calculation
|
32 |
with gr.Tab("Code Pair Similarity"):
|
33 |
# Input components
|
|
|
39 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
40 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
41 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
42 |
+
model_dropdown = HuggingfaceHubSearch(
|
43 |
+
label="Pre-Trained Model to use for Embeddings",
|
44 |
+
placeholder="Search for Pre-Trained models on Hugging Face",
|
45 |
+
search_type="model",
|
46 |
+
#value = "huggingface/CodeBERTa-small-v1"
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
|
49 |
# Output component
|
|
|
73 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
74 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
75 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
76 |
+
model_dropdown = HuggingfaceHubSearch(
|
77 |
+
label="Pre-Trained Model to use for Embeddings",
|
78 |
+
placeholder="Search for Pre-Trained models on Hugging Face",
|
79 |
+
search_type="model",
|
80 |
+
#value = "huggingface/CodeBERTa-small-v1"
|
|
|
|
|
|
|
|
|
81 |
)
|
82 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
83 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|