Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ from typing import List
|
|
8 |
import zipfile
|
9 |
import os
|
10 |
import io
|
11 |
-
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
12 |
|
13 |
def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
|
14 |
model = SentenceTransformer(model_name)
|
@@ -93,29 +92,33 @@ def get_sim_list(zipped_file,Ws, Wl, Wj, model_name,threshold,number_results):
|
|
93 |
similarity_df = pd.concat([pd.DataFrame(pairs_results)], ignore_index=True)
|
94 |
similarity_df = similarity_df.sort_values(by='similarity_score', ascending=False)
|
95 |
result = filter_and_return_top(similarity_df,threshold,number_results).round(2)
|
|
|
96 |
return result
|
97 |
|
98 |
# Define the Gradio app
|
99 |
-
with gr.Blocks() as demo:
|
100 |
# Tab for similarity calculation
|
101 |
with gr.Tab("Code Pair Similarity"):
|
102 |
# Input components
|
103 |
code1 = gr.Textbox(label="Code 1")
|
104 |
code2 = gr.Textbox(label="Code 2")
|
105 |
|
106 |
-
model_dropdown = HuggingfaceHubSearch(
|
107 |
-
label="Pre-Trained Model to use for Embeddings",
|
108 |
-
placeholder="Search for Pre-Trained models on Hugging Face",
|
109 |
-
search_type="model",
|
110 |
-
#value = "huggingface/CodeBERTa-small-v1"
|
111 |
-
)
|
112 |
-
|
113 |
# Accordion for weights and models
|
114 |
with gr.Accordion("Weights and Models", open=False):
|
115 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
116 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
117 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# Output component
|
120 |
output = gr.Textbox(label="Similarity Score")
|
121 |
|
@@ -139,17 +142,20 @@ with gr.Blocks() as demo:
|
|
139 |
# File uploader component
|
140 |
file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
|
141 |
|
142 |
-
model_dropdown = HuggingfaceHubSearch(
|
143 |
-
label="Pre-Trained Model to use for Embeddings",
|
144 |
-
placeholder="Search for Pre-Trained models on Hugging Face",
|
145 |
-
search_type="model",
|
146 |
-
)
|
147 |
-
|
148 |
with gr.Accordion("Weights and Models", open=False):
|
149 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
150 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
151 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
154 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|
155 |
|
|
|
8 |
import zipfile
|
9 |
import os
|
10 |
import io
|
|
|
11 |
|
12 |
def calculate_similarity(code1, code2, Ws, Wl, Wj, model_name):
|
13 |
model = SentenceTransformer(model_name)
|
|
|
92 |
similarity_df = pd.concat([pd.DataFrame(pairs_results)], ignore_index=True)
|
93 |
similarity_df = similarity_df.sort_values(by='similarity_score', ascending=False)
|
94 |
result = filter_and_return_top(similarity_df,threshold,number_results).round(2)
|
95 |
+
|
96 |
return result
|
97 |
|
98 |
# Define the Gradio app
|
99 |
+
with gr.Blocks(theme=gr.themes.Glass()) as demo:
|
100 |
# Tab for similarity calculation
|
101 |
with gr.Tab("Code Pair Similarity"):
|
102 |
# Input components
|
103 |
code1 = gr.Textbox(label="Code 1")
|
104 |
code2 = gr.Textbox(label="Code 2")
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
# Accordion for weights and models
|
107 |
with gr.Accordion("Weights and Models", open=False):
|
108 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
109 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
110 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
111 |
+
model_dropdown = gr.Dropdown(
|
112 |
+
[("codebert", "microsoft/codebert-base"),
|
113 |
+
("graphcodebert", "microsoft/graphcodebert-base"),
|
114 |
+
("UnixCoder", "microsoft/unixcoder-base-unimodal"),
|
115 |
+
("CodeBERTa", "huggingface/CodeBERTa-small-v1"),
|
116 |
+
("CodeT5 small", "Salesforce/codet5-small"),
|
117 |
+
("PLBART", "uclanlp/plbart-java-cs"),],
|
118 |
+
label="Select Model",
|
119 |
+
value= "uclanlp/plbart-java-cs"
|
120 |
+
)
|
121 |
+
|
122 |
# Output component
|
123 |
output = gr.Textbox(label="Similarity Score")
|
124 |
|
|
|
142 |
# File uploader component
|
143 |
file_uploader = gr.File(label="Upload a Zip file",file_types=[".zip"])
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
with gr.Accordion("Weights and Models", open=False):
|
146 |
Ws = gr.Slider(0, 1, value=0.7, label="Semantic Search Weight", step=0.1)
|
147 |
Wl = gr.Slider(0, 1, value=0.3, label="Levenshiern Distance Weight", step=0.1)
|
148 |
Wj = gr.Slider(0, 1, value=0.0, label="Jaro Winkler Weight", step=0.1)
|
149 |
+
model_dropdown = gr.Dropdown(
|
150 |
+
[("codebert", "microsoft/codebert-base"),
|
151 |
+
("graphcodebert", "microsoft/graphcodebert-base"),
|
152 |
+
("UnixCoder", "microsoft/unixcoder-base-unimodal"),
|
153 |
+
("CodeBERTa", "huggingface/CodeBERTa-small-v1"),
|
154 |
+
("CodeT5 small", "Salesforce/codet5-small"),
|
155 |
+
("PLBART", "uclanlp/plbart-java-cs"),],
|
156 |
+
label="Select Model",
|
157 |
+
value= "uclanlp/plbart-java-cs"
|
158 |
+
)
|
159 |
threshold = gr.Slider(0, 1, value=0, label="Threshold", step=0.01)
|
160 |
number_results = gr.Slider(1, 1000, value=10, label="Number of Returned pairs", step=1)
|
161 |
|