Spaces:
Configuration error
Configuration error
Upload Covid19.py
Browse files- apps/Covid19.py +369 -3
apps/Covid19.py
CHANGED
@@ -1,3 +1,369 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from plotly import graph_objs as go
|
3 |
+
import pandas as pd
|
4 |
+
from pandas.core.groupby.groupby import DataError
|
5 |
+
from pytrends.request import TrendReq
|
6 |
+
from datetime import datetime, timedelta, date
|
7 |
+
import numpy as np
|
8 |
+
from plotly.subplots import make_subplots
|
9 |
+
from metodos import colores_corporativos
|
10 |
+
import pybase64 as base64
|
11 |
+
import io
|
12 |
+
from logs_portal import log
|
13 |
+
from Scheduler import Scheduler_Covid as sc
|
14 |
+
import os
|
15 |
+
|
16 |
+
def button_style():
|
17 |
+
style_button = """
|
18 |
+
<style>
|
19 |
+
button {
|
20 |
+
margin-top:-100px;
|
21 |
+
display: inline-block;
|
22 |
+
background-color: #e8e8e8;
|
23 |
+
border-radius: 15px;
|
24 |
+
border: 4px #cccccc;
|
25 |
+
color: #4a4a4a;
|
26 |
+
text-align: center;
|
27 |
+
font-size: 15px;
|
28 |
+
padding: 2px;
|
29 |
+
width: 260px;
|
30 |
+
transition: all 0.5s;
|
31 |
+
cursor: pointer;
|
32 |
+
margin: 5px;
|
33 |
+
}
|
34 |
+
button span {
|
35 |
+
cursor: pointer;
|
36 |
+
display: inline-block;
|
37 |
+
position: relative;
|
38 |
+
transition: 0.5s;
|
39 |
+
}
|
40 |
+
button span:after {
|
41 |
+
content: '\00bb';
|
42 |
+
position: absolute;
|
43 |
+
opacity: 0;
|
44 |
+
top: 0;
|
45 |
+
right: -20px;
|
46 |
+
transition: 0.5s;
|
47 |
+
}
|
48 |
+
button:hover {
|
49 |
+
background-color: #bb1114;
|
50 |
+
color:#e8e8e8;
|
51 |
+
}
|
52 |
+
button:hover span {
|
53 |
+
padding-right: 25px;
|
54 |
+
}
|
55 |
+
button:hover span:after {
|
56 |
+
opacity: 1;
|
57 |
+
right: 0;
|
58 |
+
}
|
59 |
+
</style>
|
60 |
+
"""
|
61 |
+
st.markdown(style_button, unsafe_allow_html=True)
|
62 |
+
|
63 |
+
|
64 |
+
def get_table_download_link(df):
|
65 |
+
"""Generates a link allowing the data in a given panda dataframe to be
|
66 |
+
downloaded
|
67 |
+
in: dataframe
|
68 |
+
out: href string
|
69 |
+
"""
|
70 |
+
csv = df.to_csv(index=False)
|
71 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
72 |
+
name_arch = "Scoring_filtrado.csv"
|
73 |
+
name_mark = "Descargar .csv "
|
74 |
+
style = '"color:black;text-decoration: none;font-size:18px;"'
|
75 |
+
href = f'<center><a href="data:file/csv;base64,{b64}" style=' + style+' download="'+name_arch+'" ><button>'+name_mark+'</button></a></center>'
|
76 |
+
return href
|
77 |
+
|
78 |
+
|
79 |
+
def get_table_excel_link(df, name_arch):
|
80 |
+
towrite = io.BytesIO()
|
81 |
+
downloaded_file = df.to_excel(towrite, encoding='utf-8', index=False,
|
82 |
+
header=True)
|
83 |
+
towrite.seek(0) # reset pointer
|
84 |
+
file_name = name_arch
|
85 |
+
style = 'style="color:black;text-decoration: none; font-size:18px;" '
|
86 |
+
name_mark = "Descargar "+name_arch
|
87 |
+
b64 = base64.b64encode(towrite.read()).decode() # some strings
|
88 |
+
linko= f'<center><a href="data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}" '+style+'download="'+file_name+'"><button>'+name_mark+'</button></a></center>'
|
89 |
+
return linko
|
90 |
+
|
91 |
+
|
92 |
+
@st.cache(show_spinner=True)
|
93 |
+
def charged_data():
|
94 |
+
regiones = {}
|
95 |
+
regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
|
96 |
+
'Mexico', 'Peru']
|
97 |
+
regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
|
98 |
+
'France']
|
99 |
+
regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
|
100 |
+
'India', 'Thailand', 'Indonesia']
|
101 |
+
regiones['USA'] = ['United States']
|
102 |
+
data_dict = np.load('Scheduler/dict_movilidad.npy',
|
103 |
+
allow_pickle='TRUE').item()
|
104 |
+
return data_dict, regiones
|
105 |
+
|
106 |
+
|
107 |
+
@st.cache(show_spinner=True)
|
108 |
+
def charged_data2():
|
109 |
+
covid_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv')
|
110 |
+
paises = {'CL': 'Chile', 'AR': 'Argentina', 'BR': 'Brazil',
|
111 |
+
'MX': 'Mexico'}
|
112 |
+
covid_data = covid_data.loc[covid_data['location'].isin(paises.values())]
|
113 |
+
covid_data['date'] = pd.to_datetime(covid_data['date'])
|
114 |
+
covid_data.set_index(['date', 'location'], inplace=True)
|
115 |
+
# Creamos diccionario con cada una de las variables para distintos pa铆ses
|
116 |
+
data_dict = {}
|
117 |
+
for col in covid_data.columns:
|
118 |
+
try:
|
119 |
+
data_dict[col] = covid_data[col].unstack().fillna(0).rolling(1).mean()
|
120 |
+
except DataError:
|
121 |
+
pass
|
122 |
+
# Descargamos la data de google trends
|
123 |
+
pytrends = TrendReq(retries=5, backoff_factor=0.2,
|
124 |
+
requests_args={'verify': False})
|
125 |
+
start = (datetime.today() - timedelta(180)).strftime("%Y-%m-%d")
|
126 |
+
start = datetime(2020, 2, 1).strftime("%Y-%m-%d")
|
127 |
+
end = datetime.today().strftime("%Y-%m-%d")
|
128 |
+
tf = f'{start} {end}'
|
129 |
+
kw_lists = {
|
130 |
+
'CL': ['PCR', 'sintomas covid', 'examen covid',
|
131 |
+
'covid positivo'],
|
132 |
+
'AR': ['PCR', 'olfato', 'sintomas covid', 'perdida gusto',
|
133 |
+
'covid positivo'],
|
134 |
+
'MX': ['PCR', 'olfato', 'sintomas covid', 'covid positivo',
|
135 |
+
'perdida gusto'],
|
136 |
+
'BR': ['PCR', 'sintomas covid', 'exame covid', 'covid positivo']
|
137 |
+
}
|
138 |
+
gt_data = {}
|
139 |
+
for p, kw in kw_lists.items():
|
140 |
+
pytrends.build_payload(kw, timeframe=tf, geo=p)
|
141 |
+
df = pytrends.interest_over_time().drop(columns='isPartial')
|
142 |
+
gt_data[paises[p]] = df.div(df.mean(0).values)
|
143 |
+
data_dict['GT Index'] = pd.DataFrame({p: gt_data[p].mean(1).rolling(1).mean()
|
144 |
+
for p in gt_data.keys()})
|
145 |
+
return data_dict, paises
|
146 |
+
|
147 |
+
|
148 |
+
@log
|
149 |
+
def Movilidad():
|
150 |
+
largo = 400
|
151 |
+
ancho = 550
|
152 |
+
button_style()
|
153 |
+
placebar = st.empty()
|
154 |
+
percent_complete = 0
|
155 |
+
my_bar = placebar.progress(percent_complete)
|
156 |
+
data_cargada = charged_data()
|
157 |
+
data_dict = data_cargada[0]
|
158 |
+
regiones = data_cargada[1]
|
159 |
+
europa = data_dict['Mobility Index'][regiones.keys()]["Europa"]
|
160 |
+
latam = data_dict['Mobility Index'][regiones.keys()]["Latam"]
|
161 |
+
asia = data_dict['Mobility Index'][regiones.keys()]["Asia Emergente"]
|
162 |
+
USA = data_dict['Mobility Index'][regiones.keys()]["USA"]
|
163 |
+
mov_region = data_dict['Mobility Index'][regiones.keys()][["USA", "Europa","Asia Emergente", "Latam"]]
|
164 |
+
percent_complete = percent_complete+33
|
165 |
+
placebar.progress(percent_complete)
|
166 |
+
colores = list(colores_corporativos().values())
|
167 |
+
colores2 = []
|
168 |
+
for i in range(len(colores)):
|
169 |
+
colores2.append("rgb"+str(colores[i]))
|
170 |
+
def plot_raw_data():
|
171 |
+
fig = go.Figure()
|
172 |
+
europa_ = go.Scatter(x=europa.index, y=europa.values, name="Europa",
|
173 |
+
line=dict(color=colores2[0]))
|
174 |
+
latam_ = go.Scatter(x=latam.index, y=latam.values, name="Latam",
|
175 |
+
line=dict(color=colores2[1]))
|
176 |
+
USA_ = go.Scatter(x=USA.index, y=USA.values, name="USA",
|
177 |
+
line=dict(color=colores2[2]))
|
178 |
+
asia_ = go.Scatter(x=asia.index, y=asia.values, name="Asia Emergente",
|
179 |
+
line=dict(color=colores2[3]))
|
180 |
+
fig.add_trace(europa_)
|
181 |
+
fig.add_trace(latam_)
|
182 |
+
fig.add_trace(USA_)
|
183 |
+
fig.add_trace(asia_)
|
184 |
+
fig.layout.update(title_text="Evoluci贸n por region",
|
185 |
+
xaxis_rangeslider_visible=True,
|
186 |
+
margin_b=20,
|
187 |
+
margin_r=20,
|
188 |
+
margin_l=20,
|
189 |
+
width=ancho,
|
190 |
+
height=largo,
|
191 |
+
legend=dict(orientation="h",
|
192 |
+
yanchor="bottom",
|
193 |
+
y=1.02,
|
194 |
+
xanchor="right",
|
195 |
+
x=1))
|
196 |
+
fig2 = go.Figure()
|
197 |
+
i = 0
|
198 |
+
for pais in regiones["Latam"]:
|
199 |
+
data_pais = data_dict['Mobility Index'][regiones['Latam']][pais]
|
200 |
+
pais_gr = go.Scatter(x=data_pais.index,
|
201 |
+
y=data_pais.values, name=pais,
|
202 |
+
line=dict(color=colores2[i]))
|
203 |
+
fig2.add_trace(pais_gr)
|
204 |
+
i = i+1
|
205 |
+
fig2.layout.update(title_text="Evoluci贸n LATAM",
|
206 |
+
xaxis_rangeslider_visible=True, margin_b=20,
|
207 |
+
margin_r=20,margin_l=20,
|
208 |
+
width=ancho, height=largo,
|
209 |
+
legend=dict(orientation="h",
|
210 |
+
yanchor="bottom",
|
211 |
+
y=1.0,
|
212 |
+
xanchor="right",
|
213 |
+
x=1))
|
214 |
+
col1, col2 = st.columns(2)
|
215 |
+
col1.plotly_chart(fig, use_container_width=True)
|
216 |
+
col2.plotly_chart(fig2, use_container_width=True)
|
217 |
+
link_excel_1 = get_table_excel_link(data_dict['Mobility Index'][regiones['Latam']], "Movilidad Latam.xlsx")
|
218 |
+
link_excel_2 = get_table_excel_link(mov_region, "Movilidad por region.xlsx")
|
219 |
+
col1.markdown(link_excel_1, unsafe_allow_html=True)
|
220 |
+
col2.markdown(link_excel_2, unsafe_allow_html=True)
|
221 |
+
percent_complete = percent_complete + 33
|
222 |
+
placebar.progress(percent_complete)
|
223 |
+
placebar.empty()
|
224 |
+
plot_raw_data()
|
225 |
+
percent_complete = percent_complete + 34
|
226 |
+
my_bar.progress(percent_complete)
|
227 |
+
my_bar.empty()
|
228 |
+
data_desag = pd.read_excel("Scheduler/Movilidad_desagrada.xlsx",
|
229 |
+
engine="openpyxl")
|
230 |
+
st.markdown(get_table_excel_link(data_desag, "Movilidad desagregada.xlsx"),
|
231 |
+
unsafe_allow_html=True)
|
232 |
+
try:
|
233 |
+
user = os.getlogin()
|
234 |
+
if user == 'bullm':
|
235 |
+
act = st.button('Actualizar')
|
236 |
+
if act:
|
237 |
+
sc.run_data_covid()
|
238 |
+
ud = pd.read_excel('Data/update_data.xlsx')
|
239 |
+
ud = ud[ud['View'] != 'Covid19']
|
240 |
+
today = date.today().strftime('%d-%m-%Y')
|
241 |
+
ud = ud.append({"View": "Covid19",
|
242 |
+
"Last_Update": today}, ignore_index=True)
|
243 |
+
ud.to_excel('Data/update_data.xlsx', index=False)
|
244 |
+
except Exception:
|
245 |
+
pass
|
246 |
+
|
247 |
+
|
248 |
+
@log
|
249 |
+
def Correlacion_GT():
|
250 |
+
largo = 400
|
251 |
+
ancho = 550
|
252 |
+
button_style()
|
253 |
+
# Cargamos la data relevante
|
254 |
+
percent_complete = 0
|
255 |
+
my_bar = st.progress(percent_complete)
|
256 |
+
percent_complete = percent_complete + 33
|
257 |
+
my_bar.progress(percent_complete)
|
258 |
+
data_cargada = charged_data2()
|
259 |
+
data_dict = data_cargada[0]
|
260 |
+
paises = data_cargada[1]
|
261 |
+
corr_df = pd.DataFrame(index=paises.values(), columns=np.arange(-3, 1))
|
262 |
+
percent_complete = percent_complete + 33
|
263 |
+
my_bar.progress(percent_complete)
|
264 |
+
i = 0
|
265 |
+
cols = st.columns(2)
|
266 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
267 |
+
for p in corr_df.index:
|
268 |
+
df = pd.concat([data_dict['GT Index'][p],
|
269 |
+
data_dict['new_cases_per_million'][p]],
|
270 |
+
axis=1).dropna()
|
271 |
+
df.columns = ['GT Index', 'Nuevos Casos Confirmados']
|
272 |
+
fig = make_subplots(specs=[[{"secondary_y": True}]])
|
273 |
+
CC = go.Scatter(x=df['GT Index'].index,
|
274 |
+
y=df['GT Index'].values, name='GT index',
|
275 |
+
line=dict(color='dimgrey'))
|
276 |
+
GT = go.Scatter(x=df['Nuevos Casos Confirmados'].index,
|
277 |
+
y=df['Nuevos Casos Confirmados'].values,
|
278 |
+
name='Casos confirmados', line=dict(color='darkred'))
|
279 |
+
fig.add_trace(CC, secondary_y=False,)
|
280 |
+
fig.add_trace(GT, secondary_y=True,)
|
281 |
+
fig.layout.update(title_text="Evoluci贸n {}".format(p),
|
282 |
+
xaxis_rangeslider_visible=True, margin_b=20,
|
283 |
+
margin_r=20, margin_l=20,
|
284 |
+
width=ancho, height=largo,
|
285 |
+
legend=dict(orientation="h",
|
286 |
+
yanchor="bottom",
|
287 |
+
y=1.02,
|
288 |
+
xanchor="right",
|
289 |
+
x=1))
|
290 |
+
link_excel = get_table_excel_link(df, "Correlacion GT.xlsx")
|
291 |
+
if i % 2 == 0:
|
292 |
+
cols[0].plotly_chart(fig, use_container_width=True)
|
293 |
+
cols[0].markdown(link_excel, unsafe_allow_html=True)
|
294 |
+
else:
|
295 |
+
cols[1].plotly_chart(fig, use_container_width=True)
|
296 |
+
cols[1].markdown(link_excel, unsafe_allow_html=True)
|
297 |
+
cols = st.columns(2)
|
298 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
299 |
+
i = i + 1
|
300 |
+
percent_complete = percent_complete + 34
|
301 |
+
my_bar.progress(percent_complete)
|
302 |
+
my_bar.empty()
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
@log
|
307 |
+
def vacunas():
|
308 |
+
largo = 400
|
309 |
+
ancho = 550
|
310 |
+
button_style()
|
311 |
+
vac_data = pd.read_csv('https://covid.ourworldindata.org/data/owid-covid-data.csv').set_index(['date','location'])
|
312 |
+
country_pop = (vac_data['population'].reset_index().set_index('location')
|
313 |
+
.drop(columns='date').squeeze().drop_duplicates())
|
314 |
+
min_pop = 1000000
|
315 |
+
idx = country_pop[country_pop > min_pop].index
|
316 |
+
vac_data = vac_data['total_vaccinations_per_hundred'].unstack().ffill().fillna(0)
|
317 |
+
vac_data.index = pd.to_datetime(vac_data.index)
|
318 |
+
N = 15
|
319 |
+
top_vac = vac_data[idx].iloc[-1].nlargest(N).sort_values()
|
320 |
+
regiones = {}
|
321 |
+
regiones['Latam'] = ['Argentina', 'Brazil', 'Chile', 'Colombia',
|
322 |
+
'Mexico', 'Peru']
|
323 |
+
regiones['Europa'] = ['Italy', 'Spain', 'Germany', 'United Kingdom',
|
324 |
+
'France', 'Russia']
|
325 |
+
regiones['Asia Emergente'] = ['South Korea', 'Taiwan', 'Hong Kong',
|
326 |
+
'China', 'Japan']
|
327 |
+
regiones['Norteam茅rica'] = ['United States', 'Canada']
|
328 |
+
inicio = datetime(2020, 11, 15)
|
329 |
+
vac_data = vac_data.loc[vac_data.index > inicio].resample('W').last()
|
330 |
+
vac_data.index.name = ''
|
331 |
+
colores = colores_corporativos().values()
|
332 |
+
colores = list(colores_corporativos().values())
|
333 |
+
colores2 = []
|
334 |
+
for i in range(len(colores)):
|
335 |
+
colores2.append("rgb"+str(colores[i]))
|
336 |
+
|
337 |
+
def plot_raw_data():
|
338 |
+
i = 0
|
339 |
+
cols = st.columns(2)
|
340 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
341 |
+
for region in list(regiones.keys()):
|
342 |
+
fig = go.Figure()
|
343 |
+
j = 0
|
344 |
+
for pais in regiones[region]:
|
345 |
+
data_pais = vac_data[regiones[region]][pais]
|
346 |
+
pais_gr = go.Scatter(x=data_pais.index,
|
347 |
+
y=data_pais.values, name=pais,
|
348 |
+
line=dict(color=colores2[j]))
|
349 |
+
fig.add_trace(pais_gr)
|
350 |
+
j = j+1
|
351 |
+
fig.layout.update(title_text="Evoluci贸n "+region,
|
352 |
+
xaxis_rangeslider_visible=True, height=largo,
|
353 |
+
width=ancho, margin_b=20,
|
354 |
+
legend=dict(orientation="h",
|
355 |
+
yanchor="bottom",
|
356 |
+
y=1.0,
|
357 |
+
xanchor="right",
|
358 |
+
x=1))
|
359 |
+
link_excel = get_table_excel_link(data_pais, "Vacunacion.xlsx")
|
360 |
+
if i % 2 == 0:
|
361 |
+
cols[0].plotly_chart(fig, use_column_width=True)
|
362 |
+
cols[0].markdown(link_excel, unsafe_allow_html=True)
|
363 |
+
else:
|
364 |
+
cols[1].plotly_chart(fig, use_column_width=True)
|
365 |
+
cols[1].markdown(link_excel, unsafe_allow_html=True)
|
366 |
+
cols = st.columns(2)
|
367 |
+
col1, col2, col3, col4 = st.columns((1.5, 7, 2, 7))
|
368 |
+
i = i+1
|
369 |
+
plot_raw_data()
|