Spaces:
Build error
Build error
File size: 40,002 Bytes
2dee308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import ImagePositionalEmbeddings
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
@dataclass
class Transformer2DModelOutput(BaseOutput):
"""
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions
for the unnoised latent pixels.
"""
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
class Transformer2DModel(ModelMixin, ConfigMixin):
"""
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual
embeddings) inputs.
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard
transformer action. Finally, reshape to image.
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict
classes of unnoised image.
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*):
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
# 1. Transformer2DModel can process both standard continous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
# Define whether input is continuous or discrete depending on configuration
self.is_input_continuous = in_channels is not None
self.is_input_vectorized = num_vector_embeds is not None
if self.is_input_continuous and self.is_input_vectorized:
raise ValueError(
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is None."
)
elif not self.is_input_continuous and not self.is_input_vectorized:
raise ValueError(
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make"
" sure that either `in_channels` or `num_vector_embeds` is not None."
)
# 2. Define input layers
if self.is_input_continuous:
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
if use_linear_projection:
self.proj_in = nn.Linear(in_channels, inner_dim)
else:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
self.height = sample_size
self.width = sample_size
self.num_vector_embeds = num_vector_embeds
self.num_latent_pixels = self.height * self.width
self.latent_image_embedding = ImagePositionalEmbeddings(
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
)
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
)
for d in range(num_layers)
]
)
# 4. Define output layers
if self.is_input_continuous:
if use_linear_projection:
self.proj_out = nn.Linear(in_channels, inner_dim)
else:
self.proj_out = nn.Conv2d(
inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
elif self.is_input_vectorized:
self.norm_out = nn.LayerNorm(inner_dim)
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
def _set_attention_slice(self, slice_size):
for block in self.transformer_blocks:
block._set_attention_slice(slice_size)
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None,
text_format_dict={}, return_dict: bool = True):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
"""
# 1. Input
if self.is_input_continuous:
batch, channel, height, weight = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = self.proj_in(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(
0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(
0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
hidden_states = self.proj_in(hidden_states)
elif self.is_input_vectorized:
hidden_states = self.latent_image_embedding(hidden_states)
# 2. Blocks
for block in self.transformer_blocks:
hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep,
text_format_dict=text_format_dict)
# 3. Output
if self.is_input_continuous:
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(
0, 3, 1, 2).contiguous()
)
hidden_states = self.proj_out(hidden_states)
else:
hidden_states = self.proj_out(hidden_states)
hidden_states = (
hidden_states.reshape(batch, height, weight, inner_dim).permute(
0, 3, 1, 2).contiguous()
)
output = hidden_states + residual
elif self.is_input_vectorized:
hidden_states = self.norm_out(hidden_states)
logits = self.out(hidden_states)
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
logits = logits.permute(0, 2, 1)
# log(p(x_0))
output = F.log_softmax(logits.double(), dim=1).float()
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
for block in self.transformer_blocks:
block._set_use_memory_efficient_attention_xformers(
use_memory_efficient_attention_xformers)
class AttentionBlock(nn.Module):
"""
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
to the N-d case.
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
Uses three q, k, v linear layers to compute attention.
Parameters:
channels (`int`): The number of channels in the input and output.
num_head_channels (`int`, *optional*):
The number of channels in each head. If None, then `num_heads` = 1.
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm.
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
"""
def __init__(
self,
channels: int,
num_head_channels: Optional[int] = None,
norm_num_groups: int = 32,
rescale_output_factor: float = 1.0,
eps: float = 1e-5,
):
super().__init__()
self.channels = channels
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
self.num_head_size = num_head_channels
self.group_norm = nn.GroupNorm(
num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True)
# define q,k,v as linear layers
self.query = nn.Linear(channels, channels)
self.key = nn.Linear(channels, channels)
self.value = nn.Linear(channels, channels)
self.rescale_output_factor = rescale_output_factor
self.proj_attn = nn.Linear(channels, channels, 1)
def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
# move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
new_projection = projection.view(
new_projection_shape).permute(0, 2, 1, 3)
return new_projection
def forward(self, hidden_states):
residual = hidden_states
batch, channel, height, width = hidden_states.shape
# norm
hidden_states = self.group_norm(hidden_states)
hidden_states = hidden_states.view(
batch, channel, height * width).transpose(1, 2)
# proj to q, k, v
query_proj = self.query(hidden_states)
key_proj = self.key(hidden_states)
value_proj = self.value(hidden_states)
scale = 1 / math.sqrt(self.channels / self.num_heads)
# get scores
if self.num_heads > 1:
query_states = self.transpose_for_scores(query_proj)
key_states = self.transpose_for_scores(key_proj)
value_states = self.transpose_for_scores(value_proj)
# TODO: is there a way to perform batched matmul (e.g. baddbmm) on 4D tensors?
# or reformulate this into a 3D problem?
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
attention_scores = torch.matmul(
query_states, key_states.transpose(-1, -2)) * scale
else:
query_states, key_states, value_states = query_proj, key_proj, value_proj
attention_scores = torch.baddbmm(
torch.empty(
query_states.shape[0],
query_states.shape[1],
key_states.shape[1],
dtype=query_states.dtype,
device=query_states.device,
),
query_states,
key_states.transpose(-1, -2),
beta=0,
alpha=scale,
)
attention_probs = torch.softmax(
attention_scores.float(), dim=-1).type(attention_scores.dtype)
# compute attention output
if self.num_heads > 1:
# TODO: is there a way to perform batched matmul (e.g. bmm) on 4D tensors?
# or reformulate this into a 3D problem?
# TODO: measure whether on MPS device it would be faster to do this matmul via einsum
# as some matmuls can be 1.94x slower than an equivalent einsum on MPS
# https://gist.github.com/Birch-san/cba16789ec27bb20996a4b4831b13ce0
hidden_states = torch.matmul(attention_probs, value_states)
hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
new_hidden_states_shape = hidden_states.size()[
:-2] + (self.channels,)
hidden_states = hidden_states.view(new_hidden_states_shape)
else:
hidden_states = torch.bmm(attention_probs, value_states)
# compute next hidden_states
hidden_states = self.proj_attn(hidden_states)
hidden_states = hidden_states.transpose(
-1, -2).reshape(batch, channel, height, width)
# res connect and rescale
hidden_states = (hidden_states + residual) / self.rescale_output_factor
return hidden_states
class BasicTransformerBlock(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The size of the context vector for cross attention.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm (:
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
"""
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
dropout=0.0,
cross_attention_dim: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
attention_bias: bool = False,
only_cross_attention: bool = False,
):
super().__init__()
self.only_cross_attention = only_cross_attention
self.attn1 = CrossAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
) # is a self-attention
self.ff = FeedForward(dim, dropout=dropout,
activation_fn=activation_fn)
self.attn2 = CrossAttention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
) # is self-attn if context is none
# layer norms
self.use_ada_layer_norm = num_embeds_ada_norm is not None
if self.use_ada_layer_norm:
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
else:
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
# if xformers is installed try to use memory_efficient_attention by default
if is_xformers_available():
try:
self._set_use_memory_efficient_attention_xformers(True)
except Exception as e:
warnings.warn(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
def _set_attention_slice(self, slice_size):
self.attn1._slice_size = slice_size
self.attn2._slice_size = slice_size
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
if not is_xformers_available():
print("Here is how to install it")
raise ModuleNotFoundError(
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
" xformers",
name="xformers",
)
elif not torch.cuda.is_available():
raise ValueError(
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
" available for GPU "
)
else:
try:
# Make sure we can run the memory efficient attention
_ = xformers.ops.memory_efficient_attention(
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
torch.randn((1, 2, 40), device="cuda"),
)
except Exception as e:
raise e
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
def forward(self, hidden_states, context=None, timestep=None, text_format_dict={}):
# 1. Self-Attention
norm_hidden_states = (
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(
hidden_states)
)
if self.only_cross_attention:
attn_out, _ = self.attn1(
norm_hidden_states, context=context, text_format_dict=text_format_dict) + hidden_states
hidden_states = attn_out + hidden_states
else:
attn_out, _ = self.attn1(norm_hidden_states)
hidden_states = attn_out + hidden_states
# 2. Cross-Attention
norm_hidden_states = (
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(
hidden_states)
)
attn_out, _ = self.attn2(
norm_hidden_states, context=context, text_format_dict=text_format_dict)
hidden_states = attn_out + hidden_states
# 3. Feed-forward
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
return hidden_states
class CrossAttention(nn.Module):
r"""
A cross attention layer.
Parameters:
query_dim (`int`): The number of channels in the query.
cross_attention_dim (`int`, *optional*):
The number of channels in the context. If not given, defaults to `query_dim`.
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
bias (`bool`, *optional*, defaults to False):
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
"""
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
dim_head: int = 64,
dropout: float = 0.0,
bias=False,
):
super().__init__()
inner_dim = dim_head * heads
self.is_cross_attn = cross_attention_dim is not None
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.scale = dim_head**-0.5
self.heads = heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self._slice_size = None
self._use_memory_efficient_attention_xformers = False
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias)
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias)
self.to_out = nn.ModuleList([])
self.to_out.append(nn.Linear(inner_dim, query_dim))
self.to_out.append(nn.Dropout(dropout))
def reshape_heads_to_batch_dim(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size, seq_len,
head_size, dim // head_size)
tensor = tensor.permute(0, 2, 1, 3).reshape(
batch_size * head_size, seq_len, dim // head_size)
return tensor
def reshape_batch_dim_to_heads(self, tensor):
batch_size, seq_len, dim = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size,
head_size, seq_len, dim)
tensor = tensor.permute(0, 2, 1, 3).reshape(
batch_size // head_size, seq_len, dim * head_size)
return tensor
def reshape_batch_dim_to_heads_and_average(self, tensor):
batch_size, seq_len, seq_len2 = tensor.shape
head_size = self.heads
tensor = tensor.reshape(batch_size // head_size,
head_size, seq_len, seq_len2)
return tensor.mean(1)
def forward(self, hidden_states, real_attn_probs=None, context=None, mask=None, text_format_dict={}):
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
context = context if context is not None else hidden_states
key = self.to_k(context)
value = self.to_v(context)
dim = query.shape[-1]
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
# attention, what we cannot get enough of
if self._use_memory_efficient_attention_xformers:
hidden_states = self._memory_efficient_attention_xformers(
query, key, value)
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
hidden_states = hidden_states.to(query.dtype)
else:
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
# only this attention function is used
hidden_states, attn_probs = self._attention(
query, key, value, real_attn_probs, **text_format_dict)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
return hidden_states, attn_probs
def _qk(self, query, key):
return torch.baddbmm(
torch.empty(query.shape[0], query.shape[1], key.shape[1],
dtype=query.dtype, device=query.device),
query,
key.transpose(-1, -2),
beta=0,
alpha=self.scale,
)
def _attention(self, query, key, value, real_attn_probs=None, word_pos=None, font_size=None,
**kwargs):
attention_scores = self._qk(query, key)
# Font size V2:
if self.is_cross_attn and word_pos is not None and font_size is not None:
assert key.shape[1] == 77
attention_score_exp = attention_scores.exp()
font_size_abs, font_size_sign = font_size.abs(), font_size.sign()
attention_score_exp[:, :, word_pos] = attention_score_exp[:, :, word_pos].clone(
)*font_size_abs
attention_probs = attention_score_exp / \
attention_score_exp.sum(-1, True)
attention_probs[:, :, word_pos] *= font_size_sign
else:
attention_probs = attention_scores.softmax(dim=-1)
# compute attention output
if real_attn_probs is None:
hidden_states = torch.bmm(attention_probs, value)
else:
if isinstance(real_attn_probs, dict):
for pos1, pos2 in zip(real_attn_probs['inject_pos'][0], real_attn_probs['inject_pos'][1]):
attention_probs[:, :,
pos2] = real_attn_probs['reference'][:, :, pos1]
hidden_states = torch.bmm(attention_probs, value)
else:
hidden_states = torch.bmm(real_attn_probs, value)
# reshape hidden_states
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
# we also return the map averaged over heads to save memory footprint
attention_probs_avg = self.reshape_batch_dim_to_heads_and_average(
attention_probs)
return hidden_states, [attention_probs_avg, attention_probs]
def _memory_efficient_attention_xformers(self, query, key, value):
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, attn_bias=None)
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
return hidden_states
class FeedForward(nn.Module):
r"""
A feed-forward layer.
Parameters:
dim (`int`): The number of channels in the input.
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
"""
def __init__(
self,
dim: int,
dim_out: Optional[int] = None,
mult: int = 4,
dropout: float = 0.0,
activation_fn: str = "geglu",
):
super().__init__()
inner_dim = int(dim * mult)
dim_out = dim_out if dim_out is not None else dim
if activation_fn == "geglu":
geglu = GEGLU(dim, inner_dim)
elif activation_fn == "geglu-approximate":
geglu = ApproximateGELU(dim, inner_dim)
self.net = nn.ModuleList([])
# project in
self.net.append(geglu)
# project dropout
self.net.append(nn.Dropout(dropout))
# project out
self.net.append(nn.Linear(inner_dim, dim_out))
def forward(self, hidden_states):
for module in self.net:
hidden_states = module(hidden_states)
return hidden_states
# feedforward
class GEGLU(nn.Module):
r"""
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def gelu(self, gate):
if gate.device.type != "mps":
return F.gelu(gate)
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
def forward(self, hidden_states):
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
return hidden_states * self.gelu(gate)
class ApproximateGELU(nn.Module):
"""
The approximate form of Gaussian Error Linear Unit (GELU)
For more details, see section 2: https://arxiv.org/abs/1606.08415
"""
def __init__(self, dim_in: int, dim_out: int):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out)
def forward(self, x):
x = self.proj(x)
return x * torch.sigmoid(1.702 * x)
class AdaLayerNorm(nn.Module):
"""
Norm layer modified to incorporate timestep embeddings.
"""
def __init__(self, embedding_dim, num_embeddings):
super().__init__()
self.emb = nn.Embedding(num_embeddings, embedding_dim)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
def forward(self, x, timestep):
emb = self.linear(self.silu(self.emb(timestep)))
scale, shift = torch.chunk(emb, 2)
x = self.norm(x) * (1 + scale) + shift
return x
class DualTransformer2DModel(nn.Module):
"""
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
Pass if the input is continuous. The number of channels in the input and output.
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of context dimensions to use.
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
Note that this is fixed at training time as it is used for learning a number of position embeddings. See
`ImagePositionalEmbeddings`.
num_vector_embeds (`int`, *optional*):
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
The number of diffusion steps used during training. Note that this is fixed at training time as it is used
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
up to but not more than steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the TransformerBlocks' attention should contain a bias parameter.
"""
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
):
super().__init__()
self.transformers = nn.ModuleList(
[
Transformer2DModel(
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
in_channels=in_channels,
num_layers=num_layers,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attention_bias=attention_bias,
sample_size=sample_size,
num_vector_embeds=num_vector_embeds,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
)
for _ in range(2)
]
)
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
self.mix_ratio = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
self.condition_lengths = [77, 257]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
self.transformer_index_for_condition = [1, 0]
def forward(self, hidden_states, encoder_hidden_states, timestep=None, return_dict: bool = True):
"""
Args:
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
hidden_states
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, context dim)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.long`, *optional*):
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`]
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample
tensor.
"""
input_states = hidden_states
encoded_states = []
tokens_start = 0
for i in range(2):
# for each of the two transformers, pass the corresponding condition tokens
condition_state = encoder_hidden_states[:,
tokens_start: tokens_start + self.condition_lengths[i]]
transformer_index = self.transformer_index_for_condition[i]
encoded_state = self.transformers[transformer_index](input_states, condition_state, timestep, return_dict)[
0
]
encoded_states.append(encoded_state - input_states)
tokens_start += self.condition_lengths[i]
output_states = encoded_states[0] * self.mix_ratio + \
encoded_states[1] * (1 - self.mix_ratio)
output_states = output_states + input_states
if not return_dict:
return (output_states,)
return Transformer2DModelOutput(sample=output_states)
def _set_attention_slice(self, slice_size):
for transformer in self.transformers:
transformer._set_attention_slice(slice_size)
def _set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
for transformer in self.transformers:
transformer._set_use_memory_efficient_attention_xformers(
use_memory_efficient_attention_xformers)
|