Spaces:
Build error
Build error
File size: 20,802 Bytes
2dee308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import os
import torch
import collections
import torch.nn as nn
from functools import partial
from transformers import CLIPTextModel, CLIPTokenizer, logging
from diffusers import AutoencoderKL, PNDMScheduler, EulerDiscreteScheduler, DPMSolverMultistepScheduler
from models.unet_2d_condition import UNet2DConditionModel
from utils.attention_utils import CrossAttentionLayers, SelfAttentionLayers
# suppress partial model loading warning
logging.set_verbosity_error()
class RegionDiffusion(nn.Module):
def __init__(self, device):
super().__init__()
self.device = device
self.num_train_timesteps = 1000
self.clip_gradient = False
print(f'[INFO] loading stable diffusion...')
model_id = 'runwayml/stable-diffusion-v1-5'
self.vae = AutoencoderKL.from_pretrained(
model_id, subfolder="vae").to(self.device)
self.tokenizer = CLIPTokenizer.from_pretrained(
model_id, subfolder='tokenizer')
self.text_encoder = CLIPTextModel.from_pretrained(
model_id, subfolder='text_encoder').to(self.device)
self.unet = UNet2DConditionModel.from_pretrained(
model_id, subfolder="unet").to(self.device)
self.scheduler = PNDMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=self.num_train_timesteps, skip_prk_steps=True, steps_offset=1)
self.alphas_cumprod = self.scheduler.alphas_cumprod.to(self.device)
self.masks = []
self.attention_maps = None
self.selfattn_maps = None
self.crossattn_maps = None
self.color_loss = torch.nn.functional.mse_loss
self.forward_hooks = []
self.forward_replacement_hooks = []
print(f'[INFO] loaded stable diffusion!')
def get_text_embeds(self, prompt, negative_prompt):
# prompt, negative_prompt: [str]
# Tokenize text and get embeddings
text_input = self.tokenizer(
prompt, padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
with torch.no_grad():
text_embeddings = self.text_encoder(
text_input.input_ids.to(self.device))[0]
# Do the same for unconditional embeddings
uncond_input = self.tokenizer(negative_prompt, padding='max_length',
max_length=self.tokenizer.model_max_length, return_tensors='pt')
with torch.no_grad():
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(self.device))[0]
# Cat for final embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def get_text_embeds_list(self, prompts):
# prompts: [list]
text_embeddings = []
for prompt in prompts:
# Tokenize text and get embeddings
text_input = self.tokenizer(
[prompt], padding='max_length', max_length=self.tokenizer.model_max_length, truncation=True, return_tensors='pt')
with torch.no_grad():
text_embeddings.append(self.text_encoder(
text_input.input_ids.to(self.device))[0])
return text_embeddings
def produce_latents(self, text_embeddings, height=512, width=512, num_inference_steps=50, guidance_scale=7.5,
latents=None, use_guidance=False, text_format_dict={}, inject_selfattn=0, inject_background=0):
if latents is None:
latents = torch.randn(
(1, self.unet.in_channels, height // 8, width // 8), device=self.device)
if inject_selfattn > 0 or inject_background > 0:
latents_reference = latents.clone().detach()
self.scheduler.set_timesteps(num_inference_steps)
n_styles = text_embeddings.shape[0]-1
assert n_styles == len(self.masks)
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
# predict the noise residual
with torch.no_grad():
# tokens without any attributes
feat_inject_step = t > (1-inject_selfattn) * 1000
background_inject_step = i == int(inject_background * len(self.scheduler.timesteps)) and inject_background > 0
noise_pred_uncond_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[:1],
text_format_dict={})['sample']
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[-1:],
text_format_dict=text_format_dict)['sample']
if inject_selfattn > 0 or inject_background > 0:
noise_pred_uncond_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[:1],
text_format_dict={})['sample']
self.register_selfattn_hooks(feat_inject_step)
noise_pred_text_refer = self.unet(latents_reference, t, encoder_hidden_states=text_embeddings[-1:],
text_format_dict={})['sample']
self.remove_selfattn_hooks()
noise_pred_uncond = noise_pred_uncond_cur * self.masks[-1]
noise_pred_text = noise_pred_text_cur * self.masks[-1]
# tokens with attributes
for style_i, mask in enumerate(self.masks[:-1]):
self.register_replacement_hooks(feat_inject_step)
noise_pred_text_cur = self.unet(latents, t, encoder_hidden_states=text_embeddings[style_i+1:style_i+2],
text_format_dict={})['sample']
self.remove_replacement_hooks()
noise_pred_uncond = noise_pred_uncond + noise_pred_uncond_cur*mask
noise_pred_text = noise_pred_text + noise_pred_text_cur*mask
# perform classifier-free guidance
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
if inject_selfattn > 0 or inject_background > 0:
noise_pred_refer = noise_pred_uncond_refer + guidance_scale * \
(noise_pred_text_refer - noise_pred_uncond_refer)
# compute the previous noisy sample x_t -> x_t-1
latents_reference = self.scheduler.step(torch.cat([noise_pred, noise_pred_refer]), t,
torch.cat([latents, latents_reference]))[
'prev_sample']
latents, latents_reference = torch.chunk(
latents_reference, 2, dim=0)
else:
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)[
'prev_sample']
# apply guidance
if use_guidance and t < text_format_dict['guidance_start_step']:
with torch.enable_grad():
if not latents.requires_grad:
latents.requires_grad = True
latents_0 = self.predict_x0(latents, noise_pred, t)
latents_inp = 1 / 0.18215 * latents_0
imgs = self.vae.decode(latents_inp).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
loss_total = 0.
for attn_map, rgb_val in zip(text_format_dict['color_obj_atten'], text_format_dict['target_RGB']):
avg_rgb = (
imgs*attn_map[:, 0]).sum(2).sum(2)/attn_map[:, 0].sum()
loss = self.color_loss(
avg_rgb, rgb_val[:, :, 0, 0])*100
loss_total += loss
loss_total.backward()
latents = (
latents - latents.grad * text_format_dict['color_guidance_weight'] * text_format_dict['color_obj_atten_all']).detach().clone()
# apply background injection
if background_inject_step:
latents = latents_reference * self.masks[-1] + latents * \
(1-self.masks[-1])
return latents
def predict_x0(self, x_t, eps_t, t):
alpha_t = self.scheduler.alphas_cumprod[t]
return (x_t - eps_t * torch.sqrt(1-alpha_t)) / torch.sqrt(alpha_t)
def produce_attn_maps(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
guidance_scale=7.5, latents=None):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
# Prompts -> text embeds
text_embeddings = self.get_text_embeds(
prompts, negative_prompts) # [2, 77, 768]
if latents is None:
latents = torch.randn(
(text_embeddings.shape[0] // 2, self.unet.in_channels, height // 8, width // 8), device=self.device)
self.scheduler.set_timesteps(num_inference_steps)
self.remove_replacement_hooks()
with torch.autocast('cuda'):
for i, t in enumerate(self.scheduler.timesteps):
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
# predict the noise residual
with torch.no_grad():
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings)['sample']
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * \
(noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents)[
'prev_sample']
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
return imgs
def decode_latents(self, latents):
latents = 1 / 0.18215 * latents
with torch.no_grad():
imgs = self.vae.decode(latents).sample
imgs = (imgs / 2 + 0.5).clamp(0, 1)
return imgs
def encode_imgs(self, imgs):
# imgs: [B, 3, H, W]
imgs = 2 * imgs - 1
posterior = self.vae.encode(imgs).latent_dist
latents = posterior.sample() * 0.18215
return latents
def prompt_to_img(self, prompts, negative_prompts='', height=512, width=512, num_inference_steps=50,
guidance_scale=7.5, latents=None, text_format_dict={}, use_guidance=False, inject_selfattn=0, inject_background=0):
if isinstance(prompts, str):
prompts = [prompts]
if isinstance(negative_prompts, str):
negative_prompts = [negative_prompts]
# Prompts -> text embeds
text_embeds = self.get_text_embeds(
prompts, negative_prompts) # [2, 77, 768]
# else:
latents = self.produce_latents(text_embeds, height=height, width=width, latents=latents,
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale,
use_guidance=use_guidance, text_format_dict=text_format_dict,
inject_selfattn=inject_selfattn, inject_background=inject_background) # [1, 4, 64, 64]
# Img latents -> imgs
imgs = self.decode_latents(latents) # [1, 3, 512, 512]
# Img to Numpy
imgs = imgs.detach().cpu().permute(0, 2, 3, 1).numpy()
imgs = (imgs * 255).round().astype('uint8')
return imgs
def reset_attention_maps(self):
r"""Function to reset attention maps.
We reset attention maps because we append them while getting hooks
to visualize attention maps for every step.
"""
for key in self.selfattn_maps:
self.selfattn_maps[key] = []
for key in self.crossattn_maps:
self.crossattn_maps[key] = []
def register_evaluation_hooks(self):
r"""Function for registering hooks during evaluation.
We mainly store activation maps averaged over queries.
"""
self.forward_hooks = []
def save_activations(activations, name, module, inp, out):
r"""
PyTorch Forward hook to save outputs at each forward pass.
"""
# out[0] - final output of attention layer
# out[1] - attention probability matrix
if 'attn2' in name:
assert out[1].shape[-1] == 77
activations[name].append(out[1].detach().cpu())
else:
assert out[1].shape[-1] != 77
attention_dict = collections.defaultdict(list)
for name, module in self.unet.named_modules():
leaf_name = name.split('.')[-1]
if 'attn' in leaf_name:
# Register hook to obtain outputs at every attention layer.
self.forward_hooks.append(module.register_forward_hook(
partial(save_activations, attention_dict, name)
))
# attention_dict is a dictionary containing attention maps for every attention layer
self.attention_maps = attention_dict
def register_selfattn_hooks(self, feat_inject_step=False):
r"""Function for registering hooks during evaluation.
We mainly store activation maps averaged over queries.
"""
self.selfattn_forward_hooks = []
def save_activations(activations, name, module, inp, out):
r"""
PyTorch Forward hook to save outputs at each forward pass.
"""
# out[0] - final output of attention layer
# out[1] - attention probability matrix
if 'attn2' in name:
assert out[1][1].shape[-1] == 77
# cross attention injection
# activations[name] = out[1][1].detach()
else:
assert out[1][1].shape[-1] != 77
activations[name] = out[1][1].detach()
def save_resnet_activations(activations, name, module, inp, out):
r"""
PyTorch Forward hook to save outputs at each forward pass.
"""
# out[0] - final output of residual layer
# out[1] - residual hidden feature
assert out[1].shape[-1] == 16
activations[name] = out[1].detach()
attention_dict = collections.defaultdict(list)
for name, module in self.unet.named_modules():
leaf_name = name.split('.')[-1]
if 'attn' in leaf_name and feat_inject_step:
# Register hook to obtain outputs at every attention layer.
self.selfattn_forward_hooks.append(module.register_forward_hook(
partial(save_activations, attention_dict, name)
))
if name == 'up_blocks.1.resnets.1' and feat_inject_step:
self.selfattn_forward_hooks.append(module.register_forward_hook(
partial(save_resnet_activations, attention_dict, name)
))
# attention_dict is a dictionary containing attention maps for every attention layer
self.self_attention_maps_cur = attention_dict
def register_replacement_hooks(self, feat_inject_step=False):
r"""Function for registering hooks to replace self attention.
"""
self.forward_replacement_hooks = []
def replace_activations(name, module, args):
r"""
PyTorch Forward hook to save outputs at each forward pass.
"""
if 'attn1' in name:
modified_args = (args[0], self.self_attention_maps_cur[name])
return modified_args
# cross attention injection
# elif 'attn2' in name:
# modified_map = {
# 'reference': self.self_attention_maps_cur[name],
# 'inject_pos': self.inject_pos,
# }
# modified_args = (args[0], modified_map)
# return modified_args
def replace_resnet_activations(name, module, args):
r"""
PyTorch Forward hook to save outputs at each forward pass.
"""
modified_args = (args[0], args[1],
self.self_attention_maps_cur[name])
return modified_args
for name, module in self.unet.named_modules():
leaf_name = name.split('.')[-1]
if 'attn' in leaf_name and feat_inject_step:
# Register hook to obtain outputs at every attention layer.
self.forward_replacement_hooks.append(module.register_forward_pre_hook(
partial(replace_activations, name)
))
if name == 'up_blocks.1.resnets.1' and feat_inject_step:
# Register hook to obtain outputs at every attention layer.
self.forward_replacement_hooks.append(module.register_forward_pre_hook(
partial(replace_resnet_activations, name)
))
def register_tokenmap_hooks(self):
r"""Function for registering hooks during evaluation.
We mainly store activation maps averaged over queries.
"""
self.forward_hooks = []
def save_activations(selfattn_maps, crossattn_maps, n_maps, name, module, inp, out):
r"""
PyTorch Forward hook to save outputs at each forward pass.
"""
# out[0] - final output of attention layer
# out[1] - attention probability matrices
if name in n_maps:
n_maps[name] += 1
else:
n_maps[name] = 1
if 'attn2' in name:
assert out[1][0].shape[-1] == 77
if name in CrossAttentionLayers and n_maps[name] > 10:
if name in crossattn_maps:
crossattn_maps[name] += out[1][0].detach().cpu()[1:2]
else:
crossattn_maps[name] = out[1][0].detach().cpu()[1:2]
else:
assert out[1][0].shape[-1] != 77
if name in SelfAttentionLayers and n_maps[name] > 10:
if name in crossattn_maps:
selfattn_maps[name] += out[1][0].detach().cpu()[1:2]
else:
selfattn_maps[name] = out[1][0].detach().cpu()[1:2]
selfattn_maps = collections.defaultdict(list)
crossattn_maps = collections.defaultdict(list)
n_maps = collections.defaultdict(list)
for name, module in self.unet.named_modules():
leaf_name = name.split('.')[-1]
if 'attn' in leaf_name:
# Register hook to obtain outputs at every attention layer.
self.forward_hooks.append(module.register_forward_hook(
partial(save_activations, selfattn_maps,
crossattn_maps, n_maps, name)
))
# attention_dict is a dictionary containing attention maps for every attention layer
self.selfattn_maps = selfattn_maps
self.crossattn_maps = crossattn_maps
self.n_maps = n_maps
def remove_tokenmap_hooks(self):
for hook in self.forward_hooks:
hook.remove()
self.selfattn_maps = None
self.crossattn_maps = None
self.n_maps = None
def remove_evaluation_hooks(self):
for hook in self.forward_hooks:
hook.remove()
self.attention_maps = None
def remove_replacement_hooks(self):
for hook in self.forward_replacement_hooks:
hook.remove()
def remove_selfattn_hooks(self):
for hook in self.selfattn_forward_hooks:
hook.remove()
|