File size: 1,588 Bytes
9b459ae
 
 
fc62f09
5e0182c
 
 
9b459ae
5e0182c
 
 
fc62f09
 
 
 
 
 
5e0182c
 
 
 
 
 
 
 
 
 
 
 
 
 
fc62f09
 
 
 
 
5e0182c
 
 
 
 
 
 
 
 
 
fc62f09
34b863f
5e0182c
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Standard library imports
import os

# Related third-party imports
import gradio as gr
from huggingface_hub import InferenceClient

client = InferenceClient("bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning", token=os.getenv("HF_TOKEN"))


def respond(
        message,
        history: list[tuple[str, str]],
        system_message,
        max_tokens,
        temperature,
        top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a helpful coding assistant.", label="System message"),
        gr.Slider(minimum=512, maximum=8192, value=2048, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()