# Standard library imports import os import threading # Third-party imports import gradio as gr from peft import PeftModel from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer HF_TOKEN = os.getenv("HF_TOKEN") tokenizer = AutoTokenizer.from_pretrained( "bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning", token=HF_TOKEN, trust_remote_code=True ) base_model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2.5-Coder-1.5B-Instruct", device_map="auto", torch_dtype="auto", token=HF_TOKEN ) base_model.resize_token_embeddings(len(tokenizer)) model = PeftModel.from_pretrained( base_model, "bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-Reasoning", token=HF_TOKEN ) model.eval() def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): messages = [{"role": "system", "content": system_message}] for u, a in history: if u: messages.append({"role": "user", "content": u}) if a: messages.append({"role": "assistant", "content": a}) messages.append({"role": "user", "content": message}) prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) streamer = TextIteratorStreamer( tokenizer, timeout=600.0, skip_prompt=True, skip_special_tokens=True ) generation_kwargs = { **inputs, "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, "streamer": streamer, } thread = threading.Thread(target=model.generate, kwargs=generation_kwargs) thread.start() output = "" for chunk in streamer: output += chunk yield output demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a helpful coding assistant.", label="System message"), gr.Slider(minimum=512, maximum=8192, value=2048, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()