Spaces:
Sleeping
Sleeping
File size: 17,490 Bytes
6df5c93 42309dc 6df5c93 6c87654 6df5c93 e7f96d6 7255895 5d32d16 a2dbd7f e75a82f f59899c 6df5c93 f59899c f79e678 f59899c f79e678 4c7739f 2bdee9f 5479cc7 2bdee9f 151e771 e799f0d 151e771 6df5c93 f3a8770 151e771 f3a8770 1f16680 2bdee9f 56d4785 151e771 56d4785 151e771 3276db6 151e771 3de41d8 151e771 f3a8770 151e771 6df5c93 151e771 6df5c93 34426fc 3de41d8 34426fc db197d5 34426fc 6df5c93 29bb7c8 6df5c93 0fdd155 6df5c93 0fdd155 6df5c93 99bb0aa 0fdd155 d7cd739 0fdd155 d7cd739 0fdd155 d7cd739 99bb0aa fe6b0d2 8f5d5d1 fe6b0d2 99bb0aa d7cd739 99bb0aa 6df5c93 0fdd155 0c35020 740750b 0c35020 a1963bc 0c35020 a1963bc 0c35020 a1963bc 50d7308 0c35020 740750b 0c35020 0fdd155 e7aa0d3 1f16680 6df5c93 93e3091 6df5c93 506afb0 6df5c93 1afdee3 417adb9 1afdee3 8fde75c 1afdee3 30ae5be 1afdee3 60544d9 1afdee3 8c715b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
import os
import json
import gradio as gr
import zipfile
import tempfile
import requests
import urllib.parse
import io
from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document
# Load environment variables from .env file
load_dotenv()
# Load configuration from JSON file
with open('config.json') as config_file:
config = json.load(config_file)
PERSIST_DIRECTORY = config["persist_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
REPOSITORY_DIRECTORY = config["repository_directory"]
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
login(HF_TOKEN)
api = HfApi()
def load_project_id(json_file):
with open(json_file, 'r') as f:
data = json.load(f)
return data['project_id']
def download_gitlab_repo():
print("Start the upload_gitRepository function")
project_id = load_project_id('repository_ids.json')
encoded_project_id = urllib.parse.quote_plus(project_id)
# Define the URL to download the repository archive
archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip"
# Download the repository archive
response = requests.get(archive_url)
archive_bytes = io.BytesIO(response.content)
# Retrieve the original file name from the response headers
content_disposition = response.headers.get('content-disposition')
if content_disposition:
filename = content_disposition.split('filename=')[-1].strip('\"')
else:
filename = 'archive.zip' # Fallback to a default name if not found
# Check if the file already exists in the repository
existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space')
target_path = f"{REPOSITORY_DIRECTORY}/{filename}"
print(f"Target Path: '{target_path}'")
print(f"Existing Files: {[repr(file) for file in existing_files]}")
if target_path in existing_files:
print(f"File '{target_path}' already exists in the repository. Skipping upload...")
else:
# Upload the ZIP file to the new folder in the Hugging Face space repository
print("Uploading File to directory:")
print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}") # Show a preview of bytes
print(f"Target Path in Repo: '{target_path}'")
api.upload_file(
path_or_fileobj=archive_bytes,
path_in_repo=target_path,
repo_id=HF_SPACE_NAME,
repo_type='space'
)
print("Upload complete")
def get_all_files_in_folder(temp_dir, partial_path):
all_files = []
print("inner method of get all files in folder")
target_dir = os.path.join(temp_dir, partial_path)
print(target_dir)
for root, dirs, files in os.walk(target_dir):
print(f"Files in current directory ({root}): {files}")
for file in files:
print(f"Processing file: {file}")
all_files.append(os.path.join(root, file))
return all_files
def get_file(temp_dir, file_path):
full_path = os.path.join(temp_dir, file_path)
return full_path
def process_directory(directory, partial_paths=None, file_paths=None):
all_texts = []
file_references = []
zip_files = [file for file in os.listdir(directory) if file.endswith('.zip')]
if not zip_files:
print("No zip file found in the directory.")
return all_texts, file_references
if len(zip_files) > 1:
print("More than one zip file found.")
return all_texts, file_references
else:
zip_file_path = os.path.join(directory, zip_files[0])
# Create a temporary directory for the zip file
with tempfile.TemporaryDirectory() as tmpdirname:
# Unzip the file into the temporary directory
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(tmpdirname)
print(f"Extracted {zip_file_path} to {tmpdirname}")
files = []
unzipped_root = os.listdir(tmpdirname)
if len(unzipped_root) == 1 and os.path.isdir(os.path.join(tmpdirname, unzipped_root[0])):
tmpsubdirpath= os.path.join(tmpdirname, unzipped_root[0])
else:
tmpsubdirpath = tmpdirname
if not partial_paths and not file_paths:
for root, _, files_list in os.walk(tmpdirname):
for file in files_list:
files.append(os.path.join(root, file))
else:
if partial_paths:
for partial_path in partial_paths:
files += get_all_files_in_folder(tmpsubdirpath, partial_path)
if file_paths:
files += [get_file(tmpsubdirpath, file_path) for file_path in file_paths]
print(f"Total number of files: {len(files)}")
for file_path in files:
#print(f"Paths of files: {iles}")
file_ext = os.path.splitext(file_path)[1]
if os.path.getsize(file_path) == 0:
print(f"Skipping an empty file: {file_path}")
continue
with open(file_path, 'rb') as f:
if file_ext in ['.rst', '.md', '.txt', '.html', '.json', '.yaml', '.py']:
text = f.read().decode('utf-8')
elif file_ext in ['.svg']:
text = f"SVG file content from {file_path}"
elif file_ext in ['.png', '.ico']:
text = f"Image metadata from {file_path}"
else:
continue
all_texts.append(text)
file_references.append(file_path)
return all_texts, file_references
import ast
def get_source_segment(source_lines, node):
start_line, start_col = node.lineno - 1, node.col_offset
end_line = node.end_lineno - 1 if hasattr(node, 'end_lineno') else node.lineno - 1
end_col = node.end_col_offset if hasattr(node, 'end_col_offset') else len(source_lines[end_line])
lines = source_lines[start_line:end_line + 1]
lines[0] = lines[0][start_col:]
lines[-1] = lines[-1][:end_col]
return ''.join(lines)
from langchain.schema import Document
def chunk_python_file_content(content, char_limit=1572):
source_lines = content.splitlines(keepends=True)
# Parse the content into an abstract syntax tree (AST)
tree = ast.parse(content)
chunks = []
current_chunk = ""
current_chunk_size = 0
# Find all class definitions and top-level functions in the AST
class_nodes = [node for node in ast.walk(tree) if isinstance(node, ast.ClassDef)]
for class_node in class_nodes:
method_nodes = [node for node in class_node.body if isinstance(node, ast.FunctionDef)]
if method_nodes:
first_method_start_line = method_nodes[0].lineno - 1
class_def_lines = source_lines[class_node.lineno - 1:first_method_start_line]
else:
class_def_lines = source_lines[class_node.lineno - 1:class_node.end_lineno]
class_def = ''.join(class_def_lines)
class_def_size = len(class_def)
# Add class definition to the current chunk if it fits
if current_chunk_size + class_def_size <= char_limit:
current_chunk += f"{class_def.strip()}\n"
current_chunk_size += class_def_size
else:
# Start a new chunk if the class definition exceeds the limit
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = ""
current_chunk_size = 0
current_chunk += f"{class_def.strip()}\n"
current_chunk_size = class_def_size
for method_node in method_nodes:
method_def = get_source_segment(source_lines, method_node)
method_def_size = len(method_def)
# Add method definition to the current chunk if it fits
if current_chunk_size + method_def_size <= char_limit:
current_chunk += f"# This is a class method of class: {class_node.name}\n{method_def.strip()}\n"
current_chunk_size += method_def_size
else:
# Start a new chunk if the method definition exceeds the limit
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = ""
current_chunk_size = 0
current_chunk += f"# This is a class method of class: {class_node.name}\n{method_def.strip()}\n"
current_chunk_size = method_def_size
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# Split python code into chunks
def split_pythoncode_into_chunks(texts, references, chunk_size, chunk_overlap):
chunks = []
for text, reference in zip(texts, references):
file_chunks = chunk_python_file_content(text, char_limit=chunk_size)
for chunk in file_chunks:
document = Document(page_content=chunk, metadata={"source": reference})
chunks.append(document)
print(f"Total number of chunks: {len(chunks)}")
return chunks
# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = []
for text, reference in zip(texts, references):
chunks.extend([Document(page_content=chunk, metadata={"source": reference}) for chunk in text_splitter.split_text(text)])
print(f"Total number of chunks: {len(chunks)}")
return chunks
# Setup Vectorstore
def setup_vectorstore(chunks, model_name, persist_directory):
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=persist_directory)
return vectorstore
# Setup LLM
def setup_llm(model_name, temperature, api_key):
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
return llm
def retrieve_from_vectorstore(vectorstore, query, k):
results = vectorstore.similarity_search(query, k=k)
chunks_with_references = [(result.page_content, result.metadata["source"]) for result in results]
# Print the chosen chunks and their sources to the console
print("\nChosen chunks and their sources for the query:")
for chunk, source in chunks_with_references:
print(f"Source: {source}\nChunk: {chunk}\n")
print("-" * 50)
return chunks_with_references
def rag_workflow(query):
retrieved_doc_chunks = retrieve_from_vectorstore(docstore, query, k=5)
retrieved_code_chunks = retrieve_from_vectorstore(codestore, query, k=5)
doc_context = "\n\n".join([doc_chunk for doc_chunk, _ in retrieved_doc_chunks])
code_context = "\n\n".join([code_chunk for code_chunk, _ in retrieved_code_chunks])
doc_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_doc_chunks)])
code_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_code_chunks)])
print(f"Context for the query:\n{doc_context}\n")
print(f"References for the query:\n{references}\n")
prompt = f"""You are an expert python developer. Provide a clear and consice answer based only on the information in the retrieved context.
The retrieved context contains source code and documenation of an api library.
If no related Information is found from the context to answer the query, reply that you do not know.
Context:
{doc_context}
Query:
{query}
"""
response = llm.invoke(prompt)
return response.content, references
def initialize():
global docstore, codestore, chunks, llm
code_partial_paths = ['kadi_apy/lib/']
code_file_path = []
doc_partial_paths = ['docs/source/setup/']
doc_file_paths = ['docs/source/usage/lib.rst']
code_files, code_file_references = process_directory(REPOSITORY_DIRECTORY, code_partial_paths, code_file_path)
doc_files, doc_file_references = process_directory(REPOSITORY_DIRECTORY, doc_partial_paths, doc_file_paths)
code_chunks = split_pythoncode_into_chunks(code_files, code_file_references, 1500, 0)
doc_chunks = split_into_chunks(doc_files, doc_file_references, CHUNK_SIZE, CHUNK_OVERLAP)
print(f"Total number of code_chunks: {len(code_chunks)}")
print(f"Total number of doc_chunks: {len(doc_chunks)}")
docstore = setup_vectorstore(doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY)
codestore = setup_vectorstore(code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY)
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
initialize()
# Gradio utils
def check_input_text(text):
if not text:
gr.Warning("Please input a question.")
raise TypeError
return True
def add_text(history, text):
history = history + [(text, None)]
yield history, ""
import gradio as gr
def bot_kadi(history):
user_query = history[-1][0]
response, references = rag_workflow(user_query)
history[-1] = (user_query, response)
# Format references for display with text passages
formatted_references = ""
docs = query_chroma(vectorstore, user_query, k=5)
for i, (doc, ref) in enumerate(docs):
formatted_references += f"""
<div style="border: 1px solid #ddd; padding: 10px; margin-bottom: 10px; border-radius: 5px;">
<h3 style="margin-top: 0;">Reference {i+1}</h3>
<p><strong>Source:</strong> {ref}</p>
<button onclick="var elem = document.getElementById('text-{i}'); var button = this; if (elem.style.display === 'block') {{ elem.style.display = 'none'; button.innerHTML = '▶ show source text'; }} else {{ elem.style.display = 'block'; button.innerHTML = '▼ hide source text'; }}">{{'▶ show source text'}}</button>
<div id="text-{i}" style="display: none;">
<p><strong>Text:</strong> {doc}</p>
</div>
</div>
"""
yield history, formatted_references
def main():
with gr.Blocks() as demo:
gr.Markdown("## Kadi4Mat - AI Chat-Bot")
gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM")
with gr.Tab("Kadi4Mat - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Who is working on Kadi4Mat?",
"How do i install the Kadi-Apy library?",
"How do i install the Kadi-Apy library for development?",
"I need a method to upload a file to a record",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
with gr.Column(scale=3):
with gr.Tab("References"):
doc_citation = gr.HTML("<p>References used in answering the question will be displayed below.</p>")
#user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
#submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch()
if __name__ == "__main__":
main() |