File size: 19,988 Bytes
6df5c93
 
 
 
 
 
 
 
 
 
42309dc
 
 
 
6df5c93
6c87654
57b271f
 
d35cd40
6df5c93
 
 
 
 
 
 
 
2bbf094
 
6df5c93
b4050b2
 
6df5c93
 
 
 
 
 
 
466808a
6df5c93
 
 
 
 
 
 
 
 
e7f96d6
 
 
 
 
bc25670
 
 
 
 
 
2bbf094
 
 
bc25670
 
 
 
 
 
536cb6f
 
bc25670
 
 
 
 
 
2bbf094
 
 
 
bc25670
 
 
 
536cb6f
bc25670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d32d16
a2dbd7f
e75a82f
f59899c
 
 
 
 
 
 
 
6df5c93
f59899c
 
 
 
 
 
 
 
 
7f71568
f59899c
 
 
f79e678
f59899c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79e678
4c7739f
906d13d
4c7739f
 
906d13d
5479cc7
2bdee9f
 
 
 
 
151e771
 
 
 
 
 
 
76330b3
906d13d
c9266e5
 
8c87ee7
61e832f
 
59d802c
 
 
 
 
 
 
61e832f
59d802c
61e832f
8e2a4c7
61e832f
8b672ba
906d13d
 
 
8a7c4d7
906d13d
 
 
32c79e6
906d13d
32c79e6
906d13d
59e6f83
906d13d
59e6f83
906d13d
 
 
 
 
57b271f
906d13d
32c79e6
e6a3ba5
 
 
 
 
68fd2f1
906d13d
59d802c
76330b3
906d13d
6df5c93
57b271f
 
 
 
 
34426fc
 
 
6df5c93
 
 
 
 
 
9ed2e92
 
 
 
 
 
 
 
 
 
6df5c93
 
9ed2e92
0fdd155
6288d92
df02851
eff8daf
c106d4f
ced0582
8aebf77
 
6df5c93
 
 
 
 
326b887
db1cea6
f49831c
db1cea6
 
 
 
 
 
 
e062783
db1cea6
f49831c
326b887
 
 
db1cea6
 
dfa472e
db1cea6
f9083b7
db1cea6
e062783
db1cea6
dfa472e
db1cea6
 
 
 
 
99bb0aa
db1cea6
8cee1bc
 
 
 
 
 
 
 
 
 
 
 
 
 
398edfe
8cee1bc
6c5c421
 
be14336
 
 
 
 
 
 
 
 
 
 
 
 
 
7785d8d
be14336
 
 
 
 
 
7785d8d
 
be14336
7785d8d
 
 
be14336
 
 
 
 
6c5c421
be14336
04ee8c6
 
be14336
 
398edfe
 
04ee8c6
80a1da7
04ee8c6
d066682
5dae557
efd88e6
e96c0b9
b652787
e062783
 
e96c0b9
efd88e6
80a1da7
5dae557
99bb0aa
d066682
 
 
7efc081
 
 
6956308
7efc081
 
 
 
99bb0aa
d066682
d7cd739
99bb0aa
d066682
 
 
99bb0aa
 
 
 
6df5c93
 
499e447
6df5c93
 
 
bcf5ba4
8917e60
acb3542
9e24330
95634f3
 
9cdcf54
906d13d
95634f3
9e24330
698a083
52c968b
95634f3
9e24330
0c35020
9e24330
 
0c35020
9e24330
 
0c35020
68dbea1
 
7d312dc
 
25d06bf
 
b700892
1f16680
6df5c93
93e3091
 
6df5c93
 
 
 
 
 
 
 
 
 
 
506afb0
 
9cdcf54
506afb0
 
 
6df5c93
 
499e447
6df5c93
 
499e447
6df5c93
 
1afdee3
 
 
 
 
 
417adb9
40be4b1
1afdee3
 
 
 
 
 
 
 
 
 
 
8fde75c
 
 
1afdee3
 
 
 
 
 
 
 
 
499e447
 
 
 
1afdee3
 
 
8c715b2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
import os
import json
import gradio as gr
import zipfile
import tempfile
import requests
import urllib.parse
import io

from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.schema import Document
from chunk_python_code import chunk_python_code_with_metadata
from vectorstore import get_chroma_vectorstore

# Load environment variables from .env file
load_dotenv()

# Load configuration from JSON file
with open('config.json') as config_file:
    config = json.load(config_file)

with open("config2.json", "r") as file:
    config2 = json.load(file)

PERSIST_DOC_DIRECTORY = config["persist_doc_directory"]
PERSIST_CODE_DIRECTORY =config["persist_code_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
DATA_DIR = config["data_dir"]

GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]



login(HF_TOKEN)
api = HfApi()

def load_project_id(json_file):
    with open(json_file, 'r') as f:
        data = json.load(f)
    return data['project_id']


def download_gitlab_project_by_version():
    try:
        # Load the configuration from config.json

        # Extract GitLab project information from the config
        api_url = config2['gitlab']['api_url']
        project_id = urllib.parse.quote(config2['gitlab']['project']['id'], safe="")
        version = config2['gitlab']['project']['version']
        
        # Construct the URL for the release's zip file
        url = f"{api_url}/projects/{project_id}/repository/archive.zip?sha={version}"

        # Send GET request to download the zip file
        response = requests.get(url, stream=True)
        archive_bytes = io.BytesIO(response.content)

        
        if response.status_code == 200:
            # Extract filename from content-disposition header
            content_disposition = response.headers.get("content-disposition")
            if content_disposition and "filename=" in content_disposition:
                filename = content_disposition.split("filename=")[-1].strip('"')


        # test
        # target_path = f"{DATA_DIR}/{filename}"
        
        # Check if the request was successful
        if response.status_code == 200:
            api.upload_file(
                path_or_fileobj= archive_bytes,
                path_in_repo= f"{DATA_DIR}/{filename}",
                repo_id=HF_SPACE_NAME,
                repo_type='space'
        )
            print(f"Release {version} downloaded successfully as {file_path}.")
        else:
            print(f"Failed to download the release: {response.status_code} - {response.reason}")
            print(response.text)

    except FileNotFoundError:
        print("The config.json file was not found. Please ensure it exists in the project directory.")
    except json.JSONDecodeError:
        print("Failed to parse the config.json file. Please ensure it contains valid JSON.")
    except Exception as e:
        print(f"An error occurred: {e}")



def download_gitlab_repo():
    print("Start the upload_gitRepository function")
    project_id = load_project_id('repository_ids.json')
    encoded_project_id = urllib.parse.quote_plus(project_id)
    
    # Define the URL to download the repository archive
    archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip"
    
    # Download the repository archive
    response = requests.get(archive_url)
    archive_bytes = io.BytesIO(response.content)
    
    # Retrieve the original file name from the response headers
    content_disposition = response.headers.get('content-disposition')
    if content_disposition:
        filename = content_disposition.split('filename=')[-1].strip('\"')
    else:
        filename = 'archive.zip'  # Fallback to a default name if not found

    # Check if the file already exists in the repository
    existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space')
    target_path = f"{DATA_DIR}/{filename}"

    print(f"Target Path: '{target_path}'")
    print(f"Existing Files: {[repr(file) for file in existing_files]}")
    
    if target_path in existing_files:
        print(f"File '{target_path}' already exists in the repository. Skipping upload...")
    else:
        # Upload the ZIP file to the new folder in the Hugging Face space repository
        print("Uploading File to directory:")
        print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}")  # Show a preview of bytes
        print(f"Target Path in Repo: '{target_path}'")

        api.upload_file(
            path_or_fileobj=archive_bytes,
            path_in_repo=target_path,
            repo_id=HF_SPACE_NAME,
            repo_type='space'
        )
        print("Upload complete")


def get_all_files_in_folder(temp_dir, folder_path):
    
    all_files = [] 
    target_dir = os.path.join(temp_dir, folder_path)

    for root, dirs, files in os.walk(target_dir):
        print(f"Files in current directory ({root}): {files}")
        for file in files:
            print(f"Processing file: {file}")
            all_files.append(os.path.join(root, file))

    return all_files

def get_file(temp_dir, file_path):
    full_path = os.path.join(temp_dir, file_path)
    return full_path


def process_directory(directory, folder_paths, file_paths):
    all_texts = []
    file_references = []

    zip_filename = next((file for file in os.listdir(directory) if file.endswith('.zip')), None)
    zip_file_path = os.path.join(directory, zip_filename)

    with tempfile.TemporaryDirectory() as tmpdirname:
        # Unzip the file into the temporary directory
        with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
            zip_ref.extractall(tmpdirname)
            
            files = []
            print("tmpdirname: " , tmpdirname)   
            unzipped_root = os.listdir(tmpdirname)
            print("unzipped_root ", unzipped_root)

            tmpsubdirpath= os.path.join(tmpdirname, unzipped_root[0])  
            print("tempsubdirpath: ", tmpsubdirpath)

            if folder_paths:
                for folder_path in folder_paths:
                    files += get_all_files_in_folder(tmpsubdirpath, folder_path) 
            if file_paths:
                files += [get_file(tmpsubdirpath, file_path) for file_path in file_paths] 

            
            print(f"Total number of files: {len(files)}")
            
            for file_path in files:
              #  print("111111111:", file_path)    
                file_ext = os.path.splitext(file_path)[1]
             #   print("222222222:", file_ext)
                if os.path.getsize(file_path) == 0:
                    print(f"Skipping an empty file: {file_path}")
                    continue

                with open(file_path, 'rb') as f:
                    if file_ext in ['.rst', '.py']:
                        text = f.read().decode('utf-8')
                    
                        all_texts.append(text)
                        print("Filepaths brother:", file_path)
                        relative_path = os.path.relpath(file_path, tmpsubdirpath)
                        print("Relative Filepaths brother:", relative_path)
                        file_references.append(relative_path)
                    
    return all_texts, file_references
                



def split_python_code_into_chunks(texts, file_paths):
    chunks = [] 
    for text, file_path in zip(texts, file_paths):
        document_chunks = chunk_python_code_with_metadata(text, file_path)
        chunks.extend(document_chunks)   
    return chunks


# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    chunks = []

    for text, reference in zip(texts, references):
        chunks.extend([
            Document(
                page_content=chunk,
                metadata={
                    "source": reference,
                    "usage": "doc"
                }
            ) 
            for chunk in text_splitter.split_text(text)
        ])
    return chunks


# Setup Vectorstore
def embed_documents_into_vectorstore(chunks, model_name, persist_directory):
    print("Start setup_vectorstore_function")
    embedding_model = HuggingFaceEmbeddings(model_name=model_name)   
    vectorstore = get_chroma_vectorstore(embedding_model, persist_directory)
    vectorstore.add_documents(chunks)
    return vectorstore

# Setup LLM
def setup_llm(model_name, temperature, api_key):
    llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
    return llm


def format_kadi_apy_library_context(docs):
    doc_context = []
    
    for doc in docs:
        # Extract metadata information
        class_info = doc.metadata.get("class", "Unknown Class")
        type_info = doc.metadata.get("type", "Unknown Type")
        source_info = doc.metadata.get("source", "Unknown Type")
        # Format metadata and document content
       # print("YYYYYYYEEEEEEEEEEEEEEE222222222222222222222222222222:}\n\n", doc.page_content)
        formatted_doc = f"# source: {source_info}\n# class: {class_info}\n# type: {type_info}\n{doc.page_content}\n\n\n"
        doc_context.append(formatted_doc)
    
    return doc_context


def format_kadi_api_doc_context(docs):
    doc_context = []

    for doc in docs:
        source_info = doc.metadata.get("source", "Unknown Type")
       # print("YYYYYYYEEEEEEEEEEEEEEE:}\n\n", doc.page_content)
        formatted_doc = f"# source: {source_info}\n{doc.page_content}\n\n\n"
        doc_context.append(formatted_doc)
    
    return doc_context


                   
def rag_workflow(query):


    prompt = (
        f"""The query is: '{query}'.
            Based on the user's query, assist them by determining which technical document they should read to interact with the software named 'Kadi4Mat'. 
            There are three different technical documents to choose from:
                - Document 1: Provides information on how to use a Python library to interact with the HTTP API of 'Kadi4Mat'.
                - Document 2: Provides information on how to use a Python library to implement custom CLI commands to interact with 'Kadi4Mat'.
    
            Your task is to select the single most likely option. 
                If Document 1 is the best choice, respond with 'kadi-apy python library'. 
                If Document 2 is the best choice, respond with 'kadi-apy python cli library'. 
            Respond with only the exact corresponding option and do not include any additional comments, explanations, or text."
        """
    )
    library_usage_prediction = llm.predict(prompt)

    print("METADATA PREDICTION -------------------------:", metadata_prediction)
    print(metadata_prediction)


    rewrite_prompt = (
        f"""You are an intelligent assistant that helps users rewrite their queries.
            The vectorstore consists of the source code and documentation of a Python library, which enables users to 
            programmatically interact with a REST-like API of a software system. The library methods have descriptive 
            docstrings. Your task is to rewrite the query in a way that aligns with the language and structure of the 
            library's methods and documentation, ensuring optimal retrieval of relevant information.

            Guidelines for rewriting the query:
                1. Identify the main action the user wants to perform (e.g., "Upload a file to a record," "Get users of a group").
                2. Remove conversational elements like greetings or pleasantries (e.g., "Hello Chatbot", "I need you to help me with").
                3. Exclude specific variable values (e.g., "ID of my record is '31'") unless essential to the intent.
                4. Rephrase the query to match the format and keywords used in the docstrings, focusing on verbs and objects relevant to the action (e.g., "Add a record to a collection").
                5. Given the query the user might need more than one action to achieve his goal. In this case the rewritten query has more than one action. 

                Examples:
                    - User query: "Create a Python script with a method that facilitates the creation of records. This method should accept an array of identifiers as a parameter and allow metadata to be added to each record."
                    - Rewritten query: "create records, add metadata to record"
                    - User query: "Hi, can you help me write Python code to add a record to a collection? The record ID is '45', and the collection ID is '12'."
                      Rewritten query: "add a record to a collection"
                    - User query: I need a python script with which i create a new record with the title: "Hello World"  and then link the record to a given collection.
                      Rewritten query: "create a new record with title" , "link a record to a collection"

            Based on these examples and guidelines, rewrite the following user query to align more effectively with the keywords used in the docstrings. 
            Do not include any addition comments, explanations, or text.
            
            Original query:
            {query}
        """
    )

    rewritten_query_response = llm.invoke(rewrite_prompt)
    rewritten_query = rewritten_query_response.content.strip()
    
    print("A", metadata_prediction)
    print(rewritten_query)

    kadi_apy_docs = vector_store.similarity_search(query, k=5, filter={"usage": "doc"})
    kadi_apy_docs = vector_store.similarity_search(query, k=5, filter={"usage": library_usage_prediction})

    doc_context = format_kadi_api_doc_context(kadi_apy_docs)
    code_context = format_kadi_apy_library_context(kadi_apy_sourcecode)

    
    print("HERE WE GHOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO")
    print("::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::")
    #for doc in kadi_apy_sourcecode:
    #    print(doc.metadata.get("source", "Unknown Type"))
     #   print("\n")
    print("::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::")



    
    prompt = f"""You are an expert python developer. You are assisting in generating code for users who wants to make use of "kadi-apy", an API library. 
                    "Doc-context:" provides you with information how to use this API library by givnig code examples and code documentation.
                    "Code-context:" provides you information of API methods and classes from the "kadi-apy" library. 
                    Based on the retrieved contexts and the guidelines answer the query.  
                    

                    General Guidelines:
                    - If no related information is found from the contexts to answer the query, reply that you do not know.
                    
                    Guidelines when generating code:
                    - First display the full code and then follow with a well structured explanation of the generated code.

            Doc-context:
            {doc_context}

            Code-context:
            {code_context}
            
            Query: 
            {query}
    """

    
    response = llm.invoke(prompt)
    return response.content


def initialize():
    global vector_store, chunks, llm

    download_gitlab_project_by_version()
    
    code_folder_paths = ['kadi_apy']
    doc_folder_paths = ['docs/source/']

    
    code_texts, code_references = process_directory(DATA_DIR, code_folder_paths, [])
    print("LEEEEEEEEEEEENGTH of code_texts: ", len(code_texts))

    
    doc_texts, kadiAPY_doc_references = process_directory(DATA_DIR, doc_folder_paths, [])
    print("LEEEEEEEEEEEENGTH of doc_files: ", len(doc_texts))
    
    code_chunks = split_python_code_into_chunks(code_texts, code_references)
    doc_chunks = split_into_chunks(doc_texts, kadiAPY_doc_references, CHUNK_SIZE, CHUNK_OVERLAP)

    print(f"Total number of code_chunks: {len(code_chunks)}")
    print(f"Total number of doc_chunks: {len(doc_chunks)}")

    #docstore = embed_documents_into_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY)
    #codestore = embed_documents_into_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
    filename = "test"
    vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}")
    print("HELLLLLLLLLO:", os.getcwd())  # Check the current working directory
    print("BYYYYYYYYYYYYE:", os.listdir())  # List files and folders in the current 
    llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)


initialize()

# Gradio utils
def check_input_text(text):
    if not text:
        gr.Warning("Please input a question.")
        raise TypeError
    return True

def add_text(history, text):
    history = history + [(text, None)]
    yield history, ""




import gradio as gr


def bot_kadi(history):
    user_query = history[-1][0]
    response = rag_workflow(user_query)
    history[-1] = (user_query, response)

    yield history  

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## Kadi4Mat - AI Chat-Bot")
        gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM")

        with gr.Tab("Kadi4Mat - AI Assistant"):
            with gr.Row():
                with gr.Column(scale=10):
                    chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
                    user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")

                    with gr.Row():
                        with gr.Column(scale=1):
                            submit_btn = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            clear_btn = gr.Button("Clear", variant="stop")

                    gr.Examples(
                        examples=[
                            "Who is working on Kadi4Mat?",
                            "How do i install the Kadi-Apy library?",
                            "How do i install the Kadi-Apy library for development?",
                            "I need a method to upload a file to a record",
                        ],
                        inputs=user_txt,
                        outputs=chatbot,
                        fn=add_text,
                        label="Try asking...",
                        cache_examples=False,
                        examples_per_page=3,
                    )

            user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            #user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
            #submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
            clear_btn.click(lambda: None, None, chatbot, queue=False)

    demo.launch() 

    
if __name__ == "__main__":
    main()