File size: 4,102 Bytes
6df5c93
 
 
df2b26b
6df5c93
 
21b7541
fcfb36c
125fa0c
 
9a079fe
6df5c93
 
 
 
0522eea
6df5c93
 
 
 
5cebc05
0b47392
 
6df5c93
c7fa549
6df5c93
0b47392
5cebc05
 
f79e678
0ae54ee
899338b
0ae54ee
0522eea
0ae54ee
 
aa10033
0ae54ee
a74f77b
da0c2cc
5cebc05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbd9da8
 
506afb0
5cebc05
 
 
 
 
 
 
 
 
 
 
2c0c1cb
 
 
 
 
 
6df5c93
31d2d4e
 
 
 
 
 
 
 
 
5cebc05
 
 
31d2d4e
 
 
 
 
 
 
 
 
5cebc05
31d2d4e
 
 
 
 
 
 
 
 
 
4b9f2eb
 
5cebc05
31d2d4e
4b9f2eb
cbd9da8
8c715b2
 
31d2d4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import json
import gradio as gr
import streamlit as st
from huggingface_hub import HfApi, login
from dotenv import load_dotenv

from llm import get_groq_llm
from vectorstore import get_chroma_vectorstore
from embeddings import get_SFR_Code_embedding_model
from kadi_apy_bot import KadiAPYBot

# Load environment variables from .env file
load_dotenv()

vectorstore_path = "data/vectorstore"

GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]

with open("config.json", "r") as file:
    config = json.load(file)

login(HF_TOKEN)
hf_api = HfApi()

# Access the values
LLM_MODEL_NAME = config["llm_model_name"]
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])

def initialize():
    global kadiAPY_bot

    vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
    llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)

    kadiAPY_bot = KadiAPYBot(llm, vectorstore)

initialize()

def bot_kadi(history, state):
    """
    Handle user input and generate bot response using gr.State().
    """
    user_query = history[-1][0]
    
    # Add user query to the bot's state for session-specific history
    state["history"].append({"query": user_query, "response": None})
    
    # Process the query with the bot and generate a response
    response = kadiAPY_bot.process_query(user_query)
    
    # Save the response back to session state
    state["history"][-1]["response"] = response
    
    history[-1] = (user_query, response)
    yield history

# Gradio UI
def add_text(history, text, state):
    """
    Add user text to history and initialize state if needed.
    """
    if "history" not in state:
        state["history"] = []  # Initialize session-specific state
    
    history = history + [(text, None)]
    yield history, ""

def check_input_text(text):
    if not text:
        gr.Warning("Please input a question.")
        raise TypeError
    return True
    
def main():
    with gr.Blocks() as demo:
        gr.Markdown("## KadiAPY - AI Coding-Assistant")
        gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")

        with gr.Tab("KadiAPY - AI Assistant"):
            with gr.Row():
                with gr.Column(scale=10):
                    chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
                    user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
                    
                    # Create session-specific state with gr.State
                    session_state = gr.State()  

                    with gr.Row():
                        with gr.Column(scale=1):
                            submit_btn = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            clear_btn = gr.Button("Clear", variant="stop")

                    gr.Examples(
                        examples=[
                            "Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
                            "I need a method to upload a file to a record. The id of the record is 3",
                        ],
                        inputs=user_txt,
                        outputs=chatbot,
                        fn=add_text,
                        label="Try asking...",
                        cache_examples=False,
                        examples_per_page=3,
                    )

            user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt, session_state], [chatbot, user_txt]).then(bot_kadi, [chatbot, session_state], [chatbot])
            submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt, session_state], [chatbot, user_txt]).then(bot_kadi, [chatbot, session_state], [chatbot])
            clear_btn.click(lambda: None, None, chatbot, queue=False)


    demo.launch()

if __name__ == "__main__":
    main()