Spaces:
Sleeping
Sleeping
File size: 10,808 Bytes
6df5c93 c610bf1 6df5c93 42309dc 6df5c93 6c87654 57b271f d35cd40 8c5aa75 6df5c93 2bbf094 6df5c93 b4050b2 6df5c93 466808a 6df5c93 e7f96d6 bc25670 5d32d16 a2dbd7f e75a82f f59899c 6df5c93 f59899c 7f71568 f59899c f79e678 f59899c f79e678 4c7739f 57b271f 34426fc 6df5c93 9ed2e92 6df5c93 9ed2e92 0fdd155 6288d92 df02851 eff8daf c106d4f ced0582 8aebf77 6df5c93 326b887 db1cea6 f49831c db1cea6 1b8b321 db1cea6 f49831c 326b887 db1cea6 dfa472e db1cea6 f9083b7 db1cea6 1b8b321 db1cea6 dfa472e db1cea6 99bb0aa fbe4134 db1cea6 fbe4134 8cee1bc fbe4134 7efc081 fbe4134 99bb0aa fbe4134 99bb0aa fbe4134 99bb0aa 6df5c93 3e64548 6df5c93 bcf5ba4 8917e60 8c5aa75 9e24330 d846b8e 95634f3 8c5aa75 95634f3 9e24330 8c5aa75 95634f3 9e24330 0c35020 9e24330 0c35020 9e24330 0c35020 7d312dc b700892 2c0ea57 9f52dc4 2c0ea57 93e3091 ebb0364 6df5c93 506afb0 9cdcf54 506afb0 6df5c93 499e447 6df5c93 499e447 6df5c93 1afdee3 831abbd 1afdee3 831abbd 1afdee3 417adb9 40be4b1 1afdee3 8fde75c 1afdee3 499e447 1afdee3 8c715b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import os
import json
import gradio as gr
import zipfile
import tempfile
import requests
import urllib.parse
import io
from langchain_community.vectorstores import Chroma
from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.schema import Document
from chunk_python_code import chunk_python_code_with_metadata
from vectorstore import get_chroma_vectorstore
from download_gitlab_repo import download_and_upload_kadiAPY_repo_to_huggingfacespace
# Load environment variables from .env file
load_dotenv()
# Load configuration from JSON file
with open('config.json') as config_file:
config = json.load(config_file)
with open("config2.json", "r") as file:
config2 = json.load(file)
PERSIST_DOC_DIRECTORY = config["persist_doc_directory"]
PERSIST_CODE_DIRECTORY =config["persist_code_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
DATA_DIR = config["data_dir"]
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
login(HF_TOKEN)
api = HfApi()
def load_project_id(json_file):
with open(json_file, 'r') as f:
data = json.load(f)
return data['project_id']
def download_gitlab_repo():
print("Start the upload_gitRepository function")
project_id = load_project_id('repository_ids.json')
encoded_project_id = urllib.parse.quote_plus(project_id)
# Define the URL to download the repository archive
archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip"
# Download the repository archive
response = requests.get(archive_url)
archive_bytes = io.BytesIO(response.content)
# Retrieve the original file name from the response headers
content_disposition = response.headers.get('content-disposition')
if content_disposition:
filename = content_disposition.split('filename=')[-1].strip('\"')
else:
filename = 'archive.zip' # Fallback to a default name if not found
# Check if the file already exists in the repository
existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space')
target_path = f"{DATA_DIR}/{filename}"
print(f"Target Path: '{target_path}'")
print(f"Existing Files: {[repr(file) for file in existing_files]}")
if target_path in existing_files:
print(f"File '{target_path}' already exists in the repository. Skipping upload...")
else:
# Upload the ZIP file to the new folder in the Hugging Face space repository
print("Uploading File to directory:")
print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}") # Show a preview of bytes
print(f"Target Path in Repo: '{target_path}'")
api.upload_file(
path_or_fileobj=archive_bytes,
path_in_repo=target_path,
repo_id=HF_SPACE_NAME,
repo_type='space'
)
print("Upload complete")
def split_python_code_into_chunks(texts, file_paths):
chunks = []
for text, file_path in zip(texts, file_paths):
document_chunks = chunk_python_code_with_metadata(text, file_path)
chunks.extend(document_chunks)
return chunks
# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = []
for text, reference in zip(texts, references):
chunks.extend([
Document(
page_content=chunk,
metadata={
"source": reference,
"usage": "doc"
}
)
for chunk in text_splitter.split_text(text)
])
return chunks
# Setup Vectorstore
def embed_documents_into_vectorstore(chunks, model_name, persist_directory):
print("Start setup_vectorstore_function")
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
vectorstore = get_chroma_vectorstore(embedding_model, persist_directory)
vectorstore.add_documents(chunks)
return vectorstore
# Setup LLM
def setup_llm(model_name, temperature, api_key):
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
return llm
def format_kadi_apy_library_context(docs):
doc_context = []
for doc in docs:
# Extract metadata information
class_info = doc.metadata.get("class", "Unknown Class")
type_info = doc.metadata.get("type", "Unknown Type")
source_info = doc.metadata.get("source", "Unknown Type")
print(":}\n\n", doc.page_content)
formatted_doc = f"# source: {source_info}\n# class: {class_info}\n# type: {type_info}\n{doc.page_content}\n\n\n"
doc_context.append(formatted_doc)
return doc_context
def format_kadi_api_doc_context(docs):
doc_context = []
for doc in docs:
source_info = doc.metadata.get("source", "Unknown Type")
print(":}\n\n", doc.page_content)
formatted_doc = f"# source: {source_info}\n{doc.page_content}\n\n\n"
doc_context.append(formatted_doc)
return doc_context
def rag_workflow(query):
"""
RAGChain class to perform the complete RAG workflow.
"""
# Assume 'llm' and 'vector_store' are already initialized instances
rag_chain = RAGChain(llm, vector_store)
# Step 1: Predict which library usage is relevant
library_usage_prediction = rag_chain.predict_library_usage(query)
print(f"Predicted library usage: {library_usage_prediction}")
# Step 2: Retrieve contexts (documents and code snippets)
doc_contexts, code_contexts = rag_chain.retrieve_contexts(query, library_usage_prediction)
print("Retrieved Document Contexts:", doc_contexts)
print("Retrieved Code Contexts:", code_contexts)
# Step 3: Format the contexts
formatted_doc_context, formatted_code_context = rag_chain.format_context(doc_contexts, code_contexts)
print("Formatted Document Contexts:", formatted_doc_context)
print("Formatted Code Contexts:", formatted_code_context)
# Step 4: Generate the final response
response = rag_chain.generate_response(query, formatted_doc_context, formatted_code_context)
print("Generated Response:", response)
return response
def get_chroma_vectorstore2(embedding_model):
# Define the persist_directory path
vectorstore_path = "/home/user/data"
# Ensure the directory exists
os.makedirs(vectorstore_path, exist_ok=True) # Creates it if it doesn't exist
print(f"Using persist_directory: {vectorstore_path}")
# Initialize the Chroma vectorstore with the specified persist_directory
vectorstore = Chroma(persist_directory=vectorstore_path, embedding_function=embedding_model)
return vectorstore
def initialize():
global vector_store, chunks, llm
download_and_upload_kadiAPY_repo_to_huggingfacespace()
code_folder_paths = ['kadi_apy']
doc_folder_paths = ['docs/source/']
code_texts, code_references = process_directory(DATA_DIR, code_folder_paths, [])
print("LEEEEEEEEEEEENGTH of code_texts: ", len(code_texts))
doc_texts, kadiAPY_doc_references = process_directory(DATA_DIR, doc_folder_paths, [])
print("LEEEEEEEEEEEENGTH of doc_files: ", len(doc_texts))
code_chunks = split_python_code_into_chunks(code_texts, code_references)
doc_chunks = split_into_chunks(doc_texts, kadiAPY_doc_references, CHUNK_SIZE, CHUNK_OVERLAP)
print(f"Total number of code_chunks: {len(code_chunks)}")
print(f"Total number of doc_chunks: {len(doc_chunks)}")
filename = "test"
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}")
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
from langchain_community.document_loaders import TextLoader
initialize()
# Gradio utils
def check_input_text(text):
if not text:
gr.Warning("Please input a question.")
raise TypeError
return True
def add_text(history, text):
history = history + [(text, None)]
yield history, ""
import gradio as gr
def bot_kadi(history):
user_query = history[-1][0]
response = rag_workflow(user_query)
history[-1] = (user_query, response)
yield history
def main():
with gr.Blocks() as demo:
gr.Markdown("## KadiAPY - AI Coding-Assistant")
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
with gr.Tab("KadiAPY - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Who is working on Kadi4Mat?",
"How do i install the Kadi-Apy library?",
"How do i install the Kadi-Apy library for development?",
"I need a method to upload a file to a record",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch()
if __name__ == "__main__":
main() |