File size: 11,702 Bytes
6df5c93
 
 
 
 
 
 
 
 
 
42309dc
 
 
 
 
6df5c93
6c87654
6df5c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7255895
6df5c93
 
 
 
 
5d32d16
a2dbd7f
6df5c93
 
 
7f98150
6df5c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79e678
 
6df5c93
 
 
63c85fb
f79e678
 
 
63c85fb
 
 
 
f79e678
 
 
 
96e81e6
 
 
 
 
4fb2e69
96e81e6
 
f79e678
6df5c93
 
 
 
 
5bfbb23
 
6df5c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
772f151
6df5c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29bb7c8
6df5c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da60f0
6df5c93
 
 
 
 
 
 
 
 
 
 
 
 
 
5d32d16
50e8d8f
 
 
 
6df5c93
93e3091
 
6df5c93
 
 
 
 
 
 
 
 
 
 
506afb0
 
 
 
 
6df5c93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afdee3
 
 
 
 
 
417adb9
1afdee3
 
 
 
 
 
 
 
 
 
 
 
8fde75c
 
 
1afdee3
 
 
 
 
 
 
 
 
4dfa5d2
 
 
1afdee3
4dfa5d2
 
1afdee3
 
 
8c715b2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import json
import gradio as gr
import zipfile
import tempfile
import requests
import urllib.parse
import io

from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document

# Load environment variables from .env file
load_dotenv()

# Load configuration from JSON file
with open('config.json') as config_file:
    config = json.load(config_file)


PERSIST_DIRECTORY = config["persist_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
REPOSITORY_DIRECTORY = config["repository_directory"]

GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]



login(HF_TOKEN)
api = HfApi()


def load_project_ids(json_file):
    with open(json_file, 'r') as f:
        data = json.load(f)
    return data['project_ids']

def download_gitlab_repo():
    print("Start the upload_gitRepository function")
    project_ids = load_project_ids('repository_ids.json')
    
    for project_id in project_ids:
        print("Looping")
        encoded_project_id = urllib.parse.quote_plus(project_id)
        # Define the URL to download the repository archive
        archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip"
        
        # Download the repository archive
        response = requests.get(archive_url)
        archive_bytes = io.BytesIO(response.content)
        
        # Retrieve the original file name from the response headers
        content_disposition = response.headers.get('content-disposition')
        if content_disposition:
            filename = content_disposition.split('filename=')[-1].strip('\"')
        else:
            filename = 'archive.zip'  # Fallback to a default name if not found



        # Check if the file already exists in the repository
        existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space')
        target_path = f"{REPOSITORY_DIRECTORY}/{filename}"

        print(f"Target Path: '{target_path}'")
        print(f"Existing Files: {[repr(file) for file in existing_files]}")
    
        if target_path in existing_files:
            print(f"File '{target_path}' already exists in the repository. Skipping upload...")
        else:
            # Upload the ZIP file to the new folder in the Hugging Face space repository
            print("Uploading File to directory:")
            print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}")  # Show a preview of bytes
            print(f"Target Path in Repo: '{target_path}'")

            api.upload_file(
                path_or_fileobj=archive_bytes,
                path_in_repo=target_path,
                repo_id=HF_SPACE_NAME,
                repo_type='space'
            )               
            print("Upload complete")
       


def process_directory(directory):
    all_texts = []
    file_references = []

   # if not os.path.exists(directory):
    #    raise ValueError(f"Directory {directory} does not exist.")

    # Find all zip files in the directory
    zip_files = [file for file in os.listdir(directory) if file.endswith('.zip')]
    
    if not zip_files:
        print("No zip files found in the directory.")
    else:
        for zip_filename in zip_files:
            zip_file_path = os.path.join(directory, zip_filename)
            
            # Create a temporary directory for each zip file
            with tempfile.TemporaryDirectory() as tmpdirname:
                # Unzip the file into the temporary directory
                with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
                    zip_ref.extractall(tmpdirname)
                
                # Process the temporary directory
                temp_texts, temp_references = process_directory(tmpdirname)
                all_texts.extend(temp_texts)
                file_references.extend(temp_references)
    
    for root, _, files in os.walk(directory):
        for file in files:
            file_path = os.path.join(root, file)
            file_ext = os.path.splitext(file_path)[1]

            if os.path.getsize(file_path) == 0:
                print(f"Skipping an empty file: {file_path}")
                continue

            with open(file_path, 'rb') as f:
                if file_ext in ['.rst', '.md', '.txt', '.html', '.json', '.yaml', '.py']:
                    text = f.read().decode('utf-8')
                elif file_ext == '.pdf':
                    reader = PdfReader(f)
                    text = ""
                    for page in reader.pages:
                        text += page.extract_text()
                elif file_ext in ['.svg']:
                    text = f"SVG file content from {file_path}"
                elif file_ext in ['.png', '.ico']:
                    text = f"Image metadata from {file_path}"
                else:
                    continue

                all_texts.append(text)
                file_references.append(file_path)

    return all_texts, file_references




# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    chunks = []

    for text, reference in zip(texts, references):
        chunks.extend([Document(page_content=chunk, metadata={"source": reference}) for chunk in text_splitter.split_text(text)])
    print(f"Total number of chunks: {len(chunks)}")
    return chunks

# Setup Chroma
def setup_chroma(chunks, model_name="sentence-transformers/all-mpnet-base-v2", persist_directory="chroma_data"):
    embedding_model = HuggingFaceEmbeddings(model_name=model_name)
    vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=persist_directory)
    return vectorstore

# Setup LLM
def setup_llm(model_name, temperature, api_key):
    llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
    return llm

def query_chroma(vectorstore, query, k):
    results = vectorstore.similarity_search(query, k=k)
    chunks_with_references = [(result.page_content, result.metadata["source"]) for result in results]
    # Print the chosen chunks and their sources to the console
    print("\nChosen chunks and their sources for the query:")
    for chunk, source in chunks_with_references:
        print(f"Source: {source}\nChunk: {chunk}\n")
        print("-" * 50)
    return chunks_with_references

def rag_workflow(query):
    docs = query_chroma(vectorstore, query, k=10)
    context = "\n\n".join([doc for doc, _ in docs])
    references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(docs)])
    print(f"Context for the query:\n{context}\n")
    print(f"References for the query:\n{references}\n")
    prompt = f"You are an intelligent AI assistant who is very good in giving answers for anything asked or instructed by the user. Provide a clear and concise answer based only on the pieces of retrieved context. You must follow this very strictly, do not use anything else other than the retrieved context. If no related Information is found from the context, reply that you do not know. \n\nContext:\n{context}\n\nQuery: {query}"

    
    response = llm.invoke(prompt)
    return response.content, references


def initialize():
    global vectorstore, chunks, llm

    download_gitlab_repo()
    all_texts, file_references = process_directory(REPOSITORY_DIRECTORY)   
    chunks = split_into_chunks(all_texts, file_references, CHUNK_SIZE, CHUNK_OVERLAP)
    vectorstore = setup_chroma(chunks, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY)
    llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)

initialize()

# Gradio utils
def check_input_text(text):
    if not text:
        gr.Warning("Please input a question.")
        raise TypeError
    return True

def add_text(history, text):
    history = history + [(text, None)]
    yield history, ""



import gradio as gr


def bot_kadi(history):
    user_query = history[-1][0]
    response, references = rag_workflow(user_query)
    history[-1] = (user_query, response)

    # Format references for display with text passages
    formatted_references = ""
    docs = query_chroma(vectorstore, user_query, k=5)
    for i, (doc, ref) in enumerate(docs):
        formatted_references += f"""
        <div style="border: 1px solid #ddd; padding: 10px; margin-bottom: 10px; border-radius: 5px;">
            <h3 style="margin-top: 0;">Reference {i+1}</h3>
            <p><strong>Source:</strong> {ref}</p>
            <button onclick="var elem = document.getElementById('text-{i}'); var button = this; if (elem.style.display === 'block') {{ elem.style.display = 'none'; button.innerHTML = '&#9654; show source text'; }} else {{ elem.style.display = 'block'; button.innerHTML = '&#9660; hide source text'; }}">{{'&#9654; show source text'}}</button>
            <div id="text-{i}" style="display: none;">
                <p><strong>Text:</strong> {doc}</p>
            </div>
        </div>
        """

    yield history, formatted_references    

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## Kadi4Mat - AI Chat-Bot")
        gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM")

        with gr.Tab("Kadi4Mat - AI Assistant"):
            with gr.Row():
                with gr.Column(scale=10):
                    chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True)
                    user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")

                    with gr.Row():
                        with gr.Column(scale=1):
                            submit_btn = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            clear_btn = gr.Button("Clear", variant="stop")

                    gr.Examples(
                        examples=[
                            "Who is working on Kadi4Mat?",
                            "How do i install the Kadi-Apy library?",
                            "How do i install the Kadi-Apy library for development?",
                            "I need a method to upload a file to a record",
                        ],
                        inputs=user_txt,
                        outputs=chatbot,
                        fn=add_text,
                        label="Try asking...",
                        cache_examples=False,
                        examples_per_page=3,
                    )

              #  with gr.Column(scale=3):
              #      with gr.Tab("References"):
              #          doc_citation = gr.HTML("<p>References used in answering the question will be displayed below.</p>")

            user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            clear_btn.click(lambda: None, None, chatbot, queue=False)

    demo.launch() 

    
if __name__ == "__main__":
    main()