File size: 3,694 Bytes
6df5c93
 
 
df2b26b
6df5c93
 
21b7541
fcfb36c
125fa0c
 
9a079fe
6df5c93
 
 
 
0522eea
6df5c93
 
 
 
0b47392
 
 
 
9125ce3
6df5c93
c7fa549
6df5c93
0b47392
872a19a
 
0b47392
f79e678
0ae54ee
899338b
0ae54ee
0522eea
0ae54ee
 
aa10033
0ae54ee
a74f77b
da0c2cc
 
 
31d2d4e
cbd9da8
 
31d2d4e
cbd9da8
 
 
 
31d2d4e
cbd9da8
 
 
31d2d4e
cbd9da8
506afb0
cbd9da8
6df5c93
31d2d4e
 
 
cbd9da8
 
31d2d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbd9da8
31d2d4e
 
 
 
 
 
 
 
 
 
cbd9da8
 
 
 
 
 
 
 
 
 
31d2d4e
cbd9da8
8c715b2
 
31d2d4e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import json
import gradio as gr
import streamlit as st
from huggingface_hub import HfApi, login
from dotenv import load_dotenv

from llm import get_groq_llm
from vectorstore import get_chroma_vectorstore
from embeddings import get_SFR_Code_embedding_model
from kadi_apy_bot import KadiAPYBot

# Load environment variables from .env file
load_dotenv()

vectorstore_path = "data/vectorstore"

GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]


with open('config.json', 'r') as file:
    config = json.load(file)


login(HF_TOKEN)
hf_api = HfApi()

# Access the values
LLM_MODEL_NAME = config['llm_model_name']
LLM_MODEL_TEMPERATURE = float(config['llm_model_temperature'])


def initialize():
    global kadiAPY_bot

    vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
    llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)

    kadiAPY_bot = KadiAPYBot(llm, vectorstore)

initialize()




def bot_kadi(history, session_state):
    user_query = history[-1][0]   

    response = kadiAPY_bot.process_query({
        "query": user_query,
        "history": session_state["conversation"]  # Pass full conversation history
    })

    # Update the session history
    history[-1] = (user_query, response)
    session_state["conversation"].append({"query": user_query, "response": response})

    yield history

# Gradio utils with session state
def main():
    with gr.Blocks() as demo:
        gr.Markdown("## KadiAPY - AI Coding-Assistant")
        gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
        
        session_state = gr.State({"conversation": []}) 

        with gr.Tab("KadiAPY - AI Assistant"):
            with gr.Row():
                with gr.Column(scale=10):
                    chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
                    user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")

                    with gr.Row():
                        with gr.Column(scale=1):
                            submit_btn = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            clear_btn = gr.Button("Clear", variant="stop")

                    gr.Examples(
                        examples=[
                            "Write me a python script which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
                            "I need a method to upload a file to a record. The id of the record is 3",
                        ],
                        inputs=user_txt,
                        outputs=chatbot,
                        fn=add_text,
                        label="Try asking...",
                        cache_examples=False,
                        examples_per_page=3,
                    )

            # Bind input and button to modified bot_kadi
            user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(
                bot_kadi, [chatbot, session_state], [chatbot]
            )
            submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(
                bot_kadi, [chatbot, session_state], [chatbot]
            )
            clear_btn.click(lambda: None, None, chatbot, queue=False).then(
                lambda: {"conversation": []}, None, session_state, queue=False  # Clear session state
            )

    demo.launch()

if __name__ == "__main__":
    main()