Spaces:
Sleeping
Sleeping
File size: 3,694 Bytes
6df5c93 df2b26b 6df5c93 21b7541 fcfb36c 125fa0c 9a079fe 6df5c93 0522eea 6df5c93 0b47392 9125ce3 6df5c93 c7fa549 6df5c93 0b47392 872a19a 0b47392 f79e678 0ae54ee 899338b 0ae54ee 0522eea 0ae54ee aa10033 0ae54ee a74f77b da0c2cc 31d2d4e cbd9da8 31d2d4e cbd9da8 31d2d4e cbd9da8 31d2d4e cbd9da8 506afb0 cbd9da8 6df5c93 31d2d4e cbd9da8 31d2d4e cbd9da8 31d2d4e cbd9da8 31d2d4e cbd9da8 8c715b2 31d2d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import os
import json
import gradio as gr
import streamlit as st
from huggingface_hub import HfApi, login
from dotenv import load_dotenv
from llm import get_groq_llm
from vectorstore import get_chroma_vectorstore
from embeddings import get_SFR_Code_embedding_model
from kadi_apy_bot import KadiAPYBot
# Load environment variables from .env file
load_dotenv()
vectorstore_path = "data/vectorstore"
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
with open('config.json', 'r') as file:
config = json.load(file)
login(HF_TOKEN)
hf_api = HfApi()
# Access the values
LLM_MODEL_NAME = config['llm_model_name']
LLM_MODEL_TEMPERATURE = float(config['llm_model_temperature'])
def initialize():
global kadiAPY_bot
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
kadiAPY_bot = KadiAPYBot(llm, vectorstore)
initialize()
def bot_kadi(history, session_state):
user_query = history[-1][0]
response = kadiAPY_bot.process_query({
"query": user_query,
"history": session_state["conversation"] # Pass full conversation history
})
# Update the session history
history[-1] = (user_query, response)
session_state["conversation"].append({"query": user_query, "response": response})
yield history
# Gradio utils with session state
def main():
with gr.Blocks() as demo:
gr.Markdown("## KadiAPY - AI Coding-Assistant")
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
session_state = gr.State({"conversation": []})
with gr.Tab("KadiAPY - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Write me a python script which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
"I need a method to upload a file to a record. The id of the record is 3",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
# Bind input and button to modified bot_kadi
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(
bot_kadi, [chatbot, session_state], [chatbot]
)
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(
bot_kadi, [chatbot, session_state], [chatbot]
)
clear_btn.click(lambda: None, None, chatbot, queue=False).then(
lambda: {"conversation": []}, None, session_state, queue=False # Clear session state
)
demo.launch()
if __name__ == "__main__":
main() |