Spaces:
Sleeping
Sleeping
File size: 17,035 Bytes
6df5c93 42309dc 6df5c93 6c87654 57b271f 6df5c93 2bbf094 6df5c93 b4050b2 6df5c93 466808a 6df5c93 e7f96d6 bc25670 2bbf094 bc25670 536cb6f bc25670 536cb6f 2bbf094 bc25670 536cb6f bc25670 5d32d16 a2dbd7f e75a82f f59899c 6df5c93 f59899c 7f71568 f59899c f79e678 f59899c f79e678 4c7739f 906d13d 4c7739f 2bdee9f 906d13d 2bdee9f 5479cc7 2bdee9f 151e771 76330b3 906d13d c9266e5 8c87ee7 9696f80 1bf0d16 8c87ee7 59d802c 9696f80 59d802c 9696f80 8e2a4c7 9696f80 8b672ba 906d13d 8a7c4d7 906d13d 32c79e6 906d13d 32c79e6 906d13d 9540998 906d13d 81e8d86 906d13d 57b271f 906d13d 32c79e6 906d13d 68fd2f1 53d7dc9 0eb49ff 68fd2f1 906d13d 59d802c 76330b3 906d13d 6df5c93 57b271f 34426fc 6df5c93 0fdd155 616f4b7 df02851 eff8daf 8aebf77 375de0d df02851 6df5c93 0fdd155 6df5c93 326b887 99bb0aa 326b887 0c7d2d1 0fdd155 326b887 d7cd739 326b887 d7cd739 0fdd155 57b271f 0fdd155 326b887 d066682 326b887 d066682 326b887 d066682 326b887 d066682 d7cd739 d066682 99bb0aa d066682 7efc081 6956308 7efc081 99bb0aa d066682 d7cd739 99bb0aa d066682 99bb0aa 6df5c93 499e447 6df5c93 0fdd155 8917e60 acb3542 8917e60 d0c3226 b700892 906d13d a806d3b 698a083 52c968b 47b886e a806d3b 0c35020 c9b0086 47b886e 0c35020 a806d3b 0c35020 47b886e 0fdd155 b700892 1f16680 6df5c93 93e3091 6df5c93 506afb0 6df5c93 499e447 6df5c93 499e447 6df5c93 1afdee3 417adb9 40be4b1 1afdee3 8fde75c 1afdee3 499e447 1afdee3 8c715b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
import os
import json
import gradio as gr
import zipfile
import tempfile
import requests
import urllib.parse
import io
from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.schema import Document
from chunk_python_code import chunk_python_code_with_metadata
# Load environment variables from .env file
load_dotenv()
# Load configuration from JSON file
with open('config.json') as config_file:
config = json.load(config_file)
with open("config2.json", "r") as file:
config2 = json.load(file)
PERSIST_DOC_DIRECTORY = config["persist_doc_directory"]
PERSIST_CODE_DIRECTORY =config["persist_code_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
DATA_DIR = config["data_dir"]
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
login(HF_TOKEN)
api = HfApi()
def load_project_id(json_file):
with open(json_file, 'r') as f:
data = json.load(f)
return data['project_id']
def download_gitlab_project_by_version():
try:
# Load the configuration from config.json
# Extract GitLab project information from the config
api_url = config2['gitlab']['api_url']
project_id = urllib.parse.quote(config2['gitlab']['project']['id'], safe="")
version = config2['gitlab']['project']['version']
# Construct the URL for the release's zip file
url = f"{api_url}/projects/{project_id}/repository/archive.zip?sha={version}"
# Send GET request to download the zip file
response = requests.get(url, stream=True)
archive_bytes = io.BytesIO(response.content)
print(archive_bytes)
if response.status_code == 200:
# Extract filename from content-disposition header
content_disposition = response.headers.get("content-disposition")
if content_disposition and "filename=" in content_disposition:
filename = content_disposition.split("filename=")[-1].strip('"')
print(filename)
# test
# target_path = f"{DATA_DIR}/{filename}"
# Check if the request was successful
if response.status_code == 200:
api.upload_file(
path_or_fileobj= archive_bytes,
path_in_repo= f"{DATA_DIR}/{filename}",
repo_id=HF_SPACE_NAME,
repo_type='space'
)
print(f"Release {version} downloaded successfully as {file_path}.")
else:
print(f"Failed to download the release: {response.status_code} - {response.reason}")
print(response.text)
except FileNotFoundError:
print("The config.json file was not found. Please ensure it exists in the project directory.")
except json.JSONDecodeError:
print("Failed to parse the config.json file. Please ensure it contains valid JSON.")
except Exception as e:
print(f"An error occurred: {e}")
def download_gitlab_repo():
print("Start the upload_gitRepository function")
project_id = load_project_id('repository_ids.json')
encoded_project_id = urllib.parse.quote_plus(project_id)
# Define the URL to download the repository archive
archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip"
# Download the repository archive
response = requests.get(archive_url)
archive_bytes = io.BytesIO(response.content)
# Retrieve the original file name from the response headers
content_disposition = response.headers.get('content-disposition')
if content_disposition:
filename = content_disposition.split('filename=')[-1].strip('\"')
else:
filename = 'archive.zip' # Fallback to a default name if not found
# Check if the file already exists in the repository
existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space')
target_path = f"{DATA_DIR}/{filename}"
print(f"Target Path: '{target_path}'")
print(f"Existing Files: {[repr(file) for file in existing_files]}")
if target_path in existing_files:
print(f"File '{target_path}' already exists in the repository. Skipping upload...")
else:
# Upload the ZIP file to the new folder in the Hugging Face space repository
print("Uploading File to directory:")
print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}") # Show a preview of bytes
print(f"Target Path in Repo: '{target_path}'")
api.upload_file(
path_or_fileobj=archive_bytes,
path_in_repo=target_path,
repo_id=HF_SPACE_NAME,
repo_type='space'
)
print("Upload complete")
def get_all_files_in_folder(temp_dir, folder_path):
all_files = []
print("inner method of get all files in folder")
target_dir = os.path.join(temp_dir, folder_path)
print(target_dir)
for root, dirs, files in os.walk(target_dir):
print(f"Files in current directory ({root}): {files}")
for file in files:
print(f"Processing file: {file}")
all_files.append(os.path.join(root, file))
return all_files
def get_file(temp_dir, file_path):
full_path = os.path.join(temp_dir, file_path)
return full_path
def process_directory(directory, folder_paths, file_paths):
all_texts = []
file_references = []
zip_filename = next((file for file in os.listdir(directory) if file.endswith('.zip')), None) # zip_filename: kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834.zip
print("zip_filename:", zip_filename)
zip_file_path = os.path.join(directory, zip_filename) # zip_file_path: data/kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834.zip
print("zip_file_path:", zip_file_path)
# zip_file_path = os.listdir(directory) if file.endswith('.zip')
with tempfile.TemporaryDirectory() as tmpdirname:
# Unzip the file into the temporary directory
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(tmpdirname)
files = []
print("tmpdirname: " , tmpdirname) # /tmp/tmpux1v52wy
unzipped_root = os.listdir(tmpdirname)
print("unzipped_root ", unzipped_root) # ['kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834']
tmpsubdirpath= os.path.join(tmpdirname, unzipped_root[0]) # /tmp/tmpux1v52wy/kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834
print("tempsubdirpath: ", tmpsubdirpath)
if folder_paths:
for folder_path in folder_paths:
files += get_all_files_in_folder(tmpsubdirpath, folder_path)
if file_paths:
files += [get_file(tmpsubdirpath, file_path) for file_path in file_paths]
print(f"Total number of files: {len(files)}")
for file_path in files:
print("111111111:", file_path)
file_ext = os.path.splitext(file_path)[1]
print("222222222:", file_ext)
if os.path.getsize(file_path) == 0:
print(f"Skipping an empty file: {file_path}")
continue
with open(file_path, 'rb') as f:
if file_ext in ['.rst', '.py']:
text = f.read().decode('utf-8')
all_texts.append(text)
print("Filepaths brother:", file_path)
relative_path = os.path.relpath(file_path, tmpsubdirpath)
print("Relative Filepaths brother:", relative_path)
file_references.append(relative_path)
print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAA: ", relative_path)
return all_texts, file_references
def split_python_code_into_chunks(texts, file_paths):
chunks = []
for text, file_path in zip(texts, file_paths):
document_chunks = chunk_python_code_with_metadata(text, file_path)
chunks.extend(document_chunks)
return chunks
# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = []
for text, reference in zip(texts, references):
chunks.extend([Document(page_content=chunk, metadata={"source": reference}) for chunk in text_splitter.split_text(text)])
return chunks
# Setup Vectorstore
def setup_vectorstore(chunks, model_name, persist_directory):
print("Start setup_vectorstore_function")
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=persist_directory)
return vectorstore
# Setup LLM
def setup_llm(model_name, temperature, api_key):
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
return llm
def retrieve_from_vectorstore(vectorstore, query, k):
results = vectorstore.similarity_search(query, k=k)
chunks_with_references = [(result.page_content, result.metadata["source"]) for result in results]
# Print the chosen chunks and their sources to the console
print("\nChosen chunks and their sources for the query:")
for chunk, source in chunks_with_references:
print(f"Source: {source}\nChunk: {chunk}\n")
print("-" * 50)
return chunks_with_references
def retrieve_docs_from_vectorstore(vectorstore, query, k):
return vectorstore.similarity_search(query, k=k)
def format_doc_context(docs):
doc_context = "\n\n".join(doc.page_content for doc in docs)
print("\nDocument Context for LLM:\n")
print(doc_context) # Optional: Print the context for verification
return doc_context
def rag_workflow(query):
retrieved_doc_chunks = retrieve_from_vectorstore (docstore, query, k=5)
retrieved_code_chunks = retrieve_from_vectorstore(codestore, query, k=5)
# docs = retrieve_docs_from_vectorstore(docstore, query, k=5)
# doc_context = format_doc_context(docs)
doc_context = "\n\n".join([doc_chunk for doc_chunk, _ in retrieved_doc_chunks])
code_context = "\n\n".join([code_chunk for code_chunk, _ in retrieved_code_chunks])
doc_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_doc_chunks)])
code_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_code_chunks)])
print(doc_context)
print(code_context)
print(doc_references)
print(code_references)
# print("Document Chunks:\n")
# print("\n\n".join(["="*80 + "\n" + doc_chunk for doc_chunk, _ in retrieved_doc_chunks]))
# print("\nDocument References:\n")
# print(doc_references)
# print("\n" + "="*80 + "\n") # Separator between doc and code
# print("Code Chunks:\n")
# print("\n\n".join(["="*80 + "\n" + code_chunk for code_chunk, _ in retrieved_code_chunks]))
# print("\nCode References:\n")
# print(code_references)
# print(f"Context for the query:\n{doc_context}\n")
# print(f"References for the query:\n{references}\n")
prompt = f"""You are an expert python developer. You are assisting in generating code for users who wants to make use of "kadi-apy", an API library.
"Doc-context:" provides you with information how to use this API library by givnig code examples and code documentation.
"Code-context:" provides you information of API methods and classes from the "kadi-apy" library.
Based on the retrieved contexts and the guidelines answer the query.
General Guidelines:
- If no related information is found from the contexts to answer the query, reply that you do not know.
Guidelines when generating code:
- First display the full code and then follow with a well structured explanation of the generated code.
Doc-context:
{doc_context}
Code-context:
{code_context}
Query:
{query}
"""
response = llm.invoke(prompt)
return response.content
def initialize():
global docstore, codestore, chunks, llm
download_gitlab_project_by_version()
#download_gitlab_repo()
code_partial_paths = ['kadi_apy/lib/']
code_file_paths = []
doc_partial_paths = []
doc_partial_paths = ['docs/source/setup/']
doc_file_paths = ['docs/source/usage/lib.rst']
kadiAPY_code_texts, kadiAPY_code_references = process_directory(DATA_DIR, code_partial_paths, code_file_paths)
print("LEEEEEEEEEEEENGTH of code_texts: ", len(kadiAPY_code_texts))
kadiAPY_doc_texts, kadiAPY_doc_references = process_directory(DATA_DIR, doc_partial_paths, doc_file_paths)
print("LEEEEEEEEEEEENGTH of doc_files: ", len(kadiAPY_doc_texts))
kadiAPY_code_chunks = split_python_code_into_chunks(kadiAPY_code_texts, kadiAPY_code_references)
kadiAPY_doc_chunks = split_into_chunks(kadiAPY_doc_texts, kadiAPY_doc_references, CHUNK_SIZE, CHUNK_OVERLAP)
print(f"Total number of code_chunks: {len(kadiAPY_code_chunks)}")
print(f"Total number of doc_chunks: {len(kadiAPY_doc_chunks)}")
docstore = setup_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY)
codestore = setup_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
initialize()
# Gradio utils
def check_input_text(text):
if not text:
gr.Warning("Please input a question.")
raise TypeError
return True
def add_text(history, text):
history = history + [(text, None)]
yield history, ""
import gradio as gr
def bot_kadi(history):
user_query = history[-1][0]
response = rag_workflow(user_query)
history[-1] = (user_query, response)
yield history
def main():
with gr.Blocks() as demo:
gr.Markdown("## Kadi4Mat - AI Chat-Bot")
gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM")
with gr.Tab("Kadi4Mat - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Who is working on Kadi4Mat?",
"How do i install the Kadi-Apy library?",
"How do i install the Kadi-Apy library for development?",
"I need a method to upload a file to a record",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
#user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
#submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch()
if __name__ == "__main__":
main() |