File size: 17,035 Bytes
6df5c93
 
 
 
 
 
 
 
 
 
42309dc
 
 
 
 
6df5c93
6c87654
57b271f
 
6df5c93
 
 
 
 
 
 
 
2bbf094
 
6df5c93
b4050b2
 
6df5c93
 
 
 
 
 
 
466808a
6df5c93
 
 
 
 
 
 
 
 
e7f96d6
 
 
 
 
bc25670
 
 
 
 
 
2bbf094
 
 
bc25670
 
 
 
 
 
536cb6f
 
 
bc25670
 
 
 
 
 
536cb6f
2bbf094
 
 
 
bc25670
 
 
 
536cb6f
bc25670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d32d16
a2dbd7f
e75a82f
f59899c
 
 
 
 
 
 
 
6df5c93
f59899c
 
 
 
 
 
 
 
 
7f71568
f59899c
 
 
f79e678
f59899c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f79e678
4c7739f
906d13d
4c7739f
 
2bdee9f
906d13d
2bdee9f
5479cc7
2bdee9f
 
 
 
 
151e771
 
 
 
 
 
 
76330b3
906d13d
c9266e5
 
8c87ee7
9696f80
 
 
1bf0d16
8c87ee7
59d802c
 
 
 
 
 
 
9696f80
59d802c
9696f80
8e2a4c7
9696f80
8b672ba
906d13d
 
 
8a7c4d7
906d13d
 
 
32c79e6
906d13d
32c79e6
906d13d
9540998
906d13d
81e8d86
906d13d
 
 
 
 
57b271f
906d13d
32c79e6
906d13d
68fd2f1
53d7dc9
 
 
0eb49ff
68fd2f1
906d13d
59d802c
76330b3
906d13d
6df5c93
57b271f
 
 
 
 
34426fc
 
 
6df5c93
 
 
 
 
 
 
 
 
0fdd155
616f4b7
df02851
eff8daf
8aebf77
 
 
 
375de0d
df02851
 
6df5c93
 
 
 
 
0fdd155
6df5c93
 
 
 
 
 
 
 
 
326b887
 
 
 
 
 
 
 
 
 
 
 
99bb0aa
326b887
0c7d2d1
0fdd155
326b887
 
d7cd739
326b887
 
d7cd739
0fdd155
57b271f
0fdd155
 
326b887
 
d066682
326b887
 
 
 
 
 
d066682
326b887
d066682
326b887
 
 
 
d066682
 
 
d7cd739
d066682
99bb0aa
d066682
 
 
7efc081
 
 
6956308
7efc081
 
 
 
99bb0aa
d066682
d7cd739
99bb0aa
d066682
 
 
99bb0aa
 
 
 
6df5c93
 
499e447
6df5c93
 
 
0fdd155
8917e60
acb3542
8917e60
d0c3226
 
 
b700892
 
906d13d
a806d3b
 
698a083
52c968b
47b886e
a806d3b
0c35020
c9b0086
47b886e
0c35020
a806d3b
 
0c35020
47b886e
 
0fdd155
b700892
1f16680
6df5c93
93e3091
 
6df5c93
 
 
 
 
 
 
 
 
 
 
506afb0
 
 
 
 
6df5c93
 
499e447
6df5c93
 
499e447
6df5c93
 
1afdee3
 
 
 
 
 
417adb9
40be4b1
1afdee3
 
 
 
 
 
 
 
 
 
 
8fde75c
 
 
1afdee3
 
 
 
 
 
 
 
 
499e447
 
 
 
1afdee3
 
 
8c715b2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import os
import json
import gradio as gr
import zipfile
import tempfile
import requests
import urllib.parse
import io

from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.schema import Document
from chunk_python_code import chunk_python_code_with_metadata

# Load environment variables from .env file
load_dotenv()

# Load configuration from JSON file
with open('config.json') as config_file:
    config = json.load(config_file)

with open("config2.json", "r") as file:
    config2 = json.load(file)

PERSIST_DOC_DIRECTORY = config["persist_doc_directory"]
PERSIST_CODE_DIRECTORY =config["persist_code_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
DATA_DIR = config["data_dir"]

GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]



login(HF_TOKEN)
api = HfApi()

def load_project_id(json_file):
    with open(json_file, 'r') as f:
        data = json.load(f)
    return data['project_id']


def download_gitlab_project_by_version():
    try:
        # Load the configuration from config.json

        # Extract GitLab project information from the config
        api_url = config2['gitlab']['api_url']
        project_id = urllib.parse.quote(config2['gitlab']['project']['id'], safe="")
        version = config2['gitlab']['project']['version']
        
        # Construct the URL for the release's zip file
        url = f"{api_url}/projects/{project_id}/repository/archive.zip?sha={version}"

        # Send GET request to download the zip file
        response = requests.get(url, stream=True)
        archive_bytes = io.BytesIO(response.content)

        print(archive_bytes)
        
        if response.status_code == 200:
            # Extract filename from content-disposition header
            content_disposition = response.headers.get("content-disposition")
            if content_disposition and "filename=" in content_disposition:
                filename = content_disposition.split("filename=")[-1].strip('"')
        print(filename)


        # test
        # target_path = f"{DATA_DIR}/{filename}"
        
        # Check if the request was successful
        if response.status_code == 200:
            api.upload_file(
                path_or_fileobj= archive_bytes,
                path_in_repo= f"{DATA_DIR}/{filename}",
                repo_id=HF_SPACE_NAME,
                repo_type='space'
        )
            print(f"Release {version} downloaded successfully as {file_path}.")
        else:
            print(f"Failed to download the release: {response.status_code} - {response.reason}")
            print(response.text)

    except FileNotFoundError:
        print("The config.json file was not found. Please ensure it exists in the project directory.")
    except json.JSONDecodeError:
        print("Failed to parse the config.json file. Please ensure it contains valid JSON.")
    except Exception as e:
        print(f"An error occurred: {e}")



def download_gitlab_repo():
    print("Start the upload_gitRepository function")
    project_id = load_project_id('repository_ids.json')
    encoded_project_id = urllib.parse.quote_plus(project_id)
    
    # Define the URL to download the repository archive
    archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip"
    
    # Download the repository archive
    response = requests.get(archive_url)
    archive_bytes = io.BytesIO(response.content)
    
    # Retrieve the original file name from the response headers
    content_disposition = response.headers.get('content-disposition')
    if content_disposition:
        filename = content_disposition.split('filename=')[-1].strip('\"')
    else:
        filename = 'archive.zip'  # Fallback to a default name if not found

    # Check if the file already exists in the repository
    existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space')
    target_path = f"{DATA_DIR}/{filename}"

    print(f"Target Path: '{target_path}'")
    print(f"Existing Files: {[repr(file) for file in existing_files]}")
    
    if target_path in existing_files:
        print(f"File '{target_path}' already exists in the repository. Skipping upload...")
    else:
        # Upload the ZIP file to the new folder in the Hugging Face space repository
        print("Uploading File to directory:")
        print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}")  # Show a preview of bytes
        print(f"Target Path in Repo: '{target_path}'")

        api.upload_file(
            path_or_fileobj=archive_bytes,
            path_in_repo=target_path,
            repo_id=HF_SPACE_NAME,
            repo_type='space'
        )
        print("Upload complete")


def get_all_files_in_folder(temp_dir, folder_path):
    
    all_files = [] 
    print("inner method of get all files in folder")
    target_dir = os.path.join(temp_dir, folder_path)
    print(target_dir)

    for root, dirs, files in os.walk(target_dir):
        print(f"Files in current directory ({root}): {files}")
        for file in files:
            print(f"Processing file: {file}")
            all_files.append(os.path.join(root, file))

    return all_files

def get_file(temp_dir, file_path):
    full_path = os.path.join(temp_dir, file_path)
    return full_path


def process_directory(directory, folder_paths, file_paths):
    all_texts = []
    file_references = []

    zip_filename = next((file for file in os.listdir(directory) if file.endswith('.zip')), None) # zip_filename: kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834.zip
    print("zip_filename:", zip_filename)
    zip_file_path = os.path.join(directory, zip_filename)  # zip_file_path: data/kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834.zip
    print("zip_file_path:", zip_file_path)
   # zip_file_path = os.listdir(directory) if file.endswith('.zip')

    with tempfile.TemporaryDirectory() as tmpdirname:
        # Unzip the file into the temporary directory
        with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
            zip_ref.extractall(tmpdirname)
            
            files = []
            print("tmpdirname: " , tmpdirname)     # /tmp/tmpux1v52wy
            unzipped_root = os.listdir(tmpdirname)
            print("unzipped_root ", unzipped_root)  # ['kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834']

            tmpsubdirpath= os.path.join(tmpdirname, unzipped_root[0])  # /tmp/tmpux1v52wy/kadi-apy-master-2a244f1af1483b48f8f9c0d99ce2744a0950c834
            print("tempsubdirpath: ", tmpsubdirpath)

            if folder_paths:
                for folder_path in folder_paths:
                    files += get_all_files_in_folder(tmpsubdirpath, folder_path) 
            if file_paths:
                files += [get_file(tmpsubdirpath, file_path) for file_path in file_paths] 

            
            print(f"Total number of files: {len(files)}")
            
            for file_path in files:
                print("111111111:", file_path)    
                file_ext = os.path.splitext(file_path)[1]
                print("222222222:", file_ext)
                if os.path.getsize(file_path) == 0:
                    print(f"Skipping an empty file: {file_path}")
                    continue

                with open(file_path, 'rb') as f:
                    if file_ext in ['.rst', '.py']:
                        text = f.read().decode('utf-8')
                    
                    all_texts.append(text)
                    print("Filepaths brother:", file_path)
                    relative_path = os.path.relpath(file_path, tmpsubdirpath)
                    print("Relative Filepaths brother:", relative_path)
                    file_references.append(relative_path)
                    print("AAAAAAAAAAAAAAAAAAAAAAAAAAAAA: ", relative_path)
                    
    return all_texts, file_references
                



def split_python_code_into_chunks(texts, file_paths):
    chunks = [] 
    for text, file_path in zip(texts, file_paths):
        document_chunks = chunk_python_code_with_metadata(text, file_path)
        chunks.extend(document_chunks)   
    return chunks


# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    chunks = []

    for text, reference in zip(texts, references):
        chunks.extend([Document(page_content=chunk, metadata={"source": reference}) for chunk in text_splitter.split_text(text)])
    return chunks

# Setup Vectorstore
def setup_vectorstore(chunks, model_name, persist_directory):
    print("Start setup_vectorstore_function")
    embedding_model = HuggingFaceEmbeddings(model_name=model_name)   
    vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=persist_directory)
    return vectorstore





# Setup LLM
def setup_llm(model_name, temperature, api_key):
    llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
    return llm

def retrieve_from_vectorstore(vectorstore, query, k):
    results = vectorstore.similarity_search(query, k=k)
    chunks_with_references = [(result.page_content, result.metadata["source"]) for result in results]
    # Print the chosen chunks and their sources to the console
    print("\nChosen chunks and their sources for the query:")
    for chunk, source in chunks_with_references:
        print(f"Source: {source}\nChunk: {chunk}\n")
        print("-" * 50)
    return chunks_with_references


def retrieve_docs_from_vectorstore(vectorstore, query, k): 
    return vectorstore.similarity_search(query, k=k)

def format_doc_context(docs):
    doc_context = "\n\n".join(doc.page_content for doc in docs)
    
    print("\nDocument Context for LLM:\n")
    print(doc_context)  # Optional: Print the context for verification
    
    return doc_context

def rag_workflow(query):
    
    retrieved_doc_chunks = retrieve_from_vectorstore (docstore, query, k=5)
    retrieved_code_chunks = retrieve_from_vectorstore(codestore, query, k=5)

   # docs = retrieve_docs_from_vectorstore(docstore, query, k=5)
    
   # doc_context = format_doc_context(docs) 
      
    doc_context = "\n\n".join([doc_chunk for doc_chunk, _ in retrieved_doc_chunks])
    code_context = "\n\n".join([code_chunk for code_chunk, _ in retrieved_code_chunks]) 

    doc_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_doc_chunks)])
    code_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_code_chunks)])
    print(doc_context)
    print(code_context)
    print(doc_references)
    print(code_references)
    
  #  print("Document Chunks:\n")
  #  print("\n\n".join(["="*80 + "\n" + doc_chunk for doc_chunk, _ in retrieved_doc_chunks]))
  #  print("\nDocument References:\n")
  #  print(doc_references)

  #  print("\n" + "="*80 + "\n")  # Separator between doc and code

  #  print("Code Chunks:\n")
  #  print("\n\n".join(["="*80 + "\n" + code_chunk for code_chunk, _ in retrieved_code_chunks]))
  # print("\nCode References:\n")
  #  print(code_references)


   # print(f"Context for the query:\n{doc_context}\n")
    
   # print(f"References for the query:\n{references}\n")
    
    prompt = f"""You are an expert python developer. You are assisting in generating code for users who wants to make use of "kadi-apy", an API library. 
                    "Doc-context:" provides you with information how to use this API library by givnig code examples and code documentation.
                    "Code-context:" provides you information of API methods and classes from the "kadi-apy" library. 
                    Based on the retrieved contexts and the guidelines answer the query.  
                    

                    General Guidelines:
                    - If no related information is found from the contexts to answer the query, reply that you do not know.
                    
                    Guidelines when generating code:
                    - First display the full code and then follow with a well structured explanation of the generated code.

            Doc-context:
            {doc_context}

            Code-context:
            {code_context}
            
            Query: 
            {query}
    """

    
    response = llm.invoke(prompt)
    return response.content


def initialize():
    global docstore, codestore, chunks, llm

    download_gitlab_project_by_version()
    #download_gitlab_repo()
    code_partial_paths = ['kadi_apy/lib/']
    code_file_paths = []
    doc_partial_paths = []
    doc_partial_paths = ['docs/source/setup/']
    doc_file_paths = ['docs/source/usage/lib.rst']
    
    kadiAPY_code_texts, kadiAPY_code_references = process_directory(DATA_DIR, code_partial_paths, code_file_paths)
    print("LEEEEEEEEEEEENGTH of code_texts: ", len(kadiAPY_code_texts))

    
    kadiAPY_doc_texts, kadiAPY_doc_references = process_directory(DATA_DIR, doc_partial_paths, doc_file_paths)
    print("LEEEEEEEEEEEENGTH of doc_files: ", len(kadiAPY_doc_texts))
    
    kadiAPY_code_chunks = split_python_code_into_chunks(kadiAPY_code_texts, kadiAPY_code_references)
    kadiAPY_doc_chunks = split_into_chunks(kadiAPY_doc_texts, kadiAPY_doc_references, CHUNK_SIZE, CHUNK_OVERLAP)

    print(f"Total number of code_chunks: {len(kadiAPY_code_chunks)}")
    print(f"Total number of doc_chunks: {len(kadiAPY_doc_chunks)}")

    docstore = setup_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY)
    codestore = setup_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
    
    llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)


initialize()

# Gradio utils
def check_input_text(text):
    if not text:
        gr.Warning("Please input a question.")
        raise TypeError
    return True

def add_text(history, text):
    history = history + [(text, None)]
    yield history, ""



import gradio as gr


def bot_kadi(history):
    user_query = history[-1][0]
    response = rag_workflow(user_query)
    history[-1] = (user_query, response)

    yield history  

def main():
    with gr.Blocks() as demo:
        gr.Markdown("## Kadi4Mat - AI Chat-Bot")
        gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM")

        with gr.Tab("Kadi4Mat - AI Assistant"):
            with gr.Row():
                with gr.Column(scale=10):
                    chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
                    user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")

                    with gr.Row():
                        with gr.Column(scale=1):
                            submit_btn = gr.Button("Submit", variant="primary")
                        with gr.Column(scale=1):
                            clear_btn = gr.Button("Clear", variant="stop")

                    gr.Examples(
                        examples=[
                            "Who is working on Kadi4Mat?",
                            "How do i install the Kadi-Apy library?",
                            "How do i install the Kadi-Apy library for development?",
                            "I need a method to upload a file to a record",
                        ],
                        inputs=user_txt,
                        outputs=chatbot,
                        fn=add_text,
                        label="Try asking...",
                        cache_examples=False,
                        examples_per_page=3,
                    )

            user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
            #user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
            #submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
            clear_btn.click(lambda: None, None, chatbot, queue=False)

    demo.launch() 

    
if __name__ == "__main__":
    main()