Spaces:
Sleeping
Sleeping
File size: 3,333 Bytes
6df5c93 df2b26b 6df5c93 21b7541 fcfb36c 125fa0c 9a079fe 6df5c93 ae5beeb fb23588 6df5c93 0de2459 9125ce3 6df5c93 c7fa549 6df5c93 f79e678 0ae54ee 899338b 0ae54ee 331a4ac 0ae54ee aa10033 0ae54ee a74f77b da0c2cc 31d2d4e 9b514b9 31d2d4e 506afb0 6df5c93 31d2d4e 8c715b2 31d2d4e 8c715b2 31d2d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import os
import json
import gradio as gr
import streamlit as st
from huggingface_hub import HfApi, login
from dotenv import load_dotenv
from llm import get_groq_llm
from vectorstore import get_chroma_vectorstore
from embeddings import get_SFR_Code_embedding_model
from kadi_apy_bot import KadiAPYBot
# Load environment variables from .env file
load_dotenv()
# Load configuration from JSON file
with open("config.json", "r") as file:
config = json.load(file)
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
LLM_MODEL_NAME = config["llm_model"]["name"]
LLM_MODEL_TEMPERATURE = config["llm_model"]["temperature"]
login(HF_TOKEN)
hf_api = HfApi()
def initialize():
global kadiAPY_bot
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), "data/vectorstore")
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
kadiAPY_bot = KadiAPYBot(llm, vectorstore)
initialize()
def bot_kadi(history):
user_query = history[-1][0]
response = kadiAPY_bot.process_query(user_query)
history[-1] = (user_query, response)
yield history
# Gradio utils
def check_input_text(text):
if not text:
gr.Warning("Please input a question.")
raise TypeError
return True
def add_text(history, text):
history = history + [(text, None)]
yield history, ""
import gradio as gr
def main():
with gr.Blocks() as demo:
gr.Markdown("## KadiAPY - AI Coding-Assistant")
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
with gr.Tab("KadiAPY - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
"I need a method to upload a file to a record. The id of the record is 3",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch()
if __name__ == "__main__":
main() |