|
import os |
|
import json |
|
import gradio as gr |
|
|
|
from huggingface_hub import HfApi, login |
|
from PyPDF2 import PdfReader |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_groq import ChatGroq |
|
from dotenv import load_dotenv |
|
from langchain.docstore.document import Document |
|
from langchain.schema import Document |
|
|
|
from chunk_python_code import chunk_python_code_with_metadata |
|
from vectorstore import get_chroma_vectorstore |
|
from download_repo_to_huggingface import download_and_upload_kadiAPY_repo_to_huggingfacespace |
|
from process_repo_zipfile import extract_files_and_filepath_from_dir |
|
from ragchain import RAGChain |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
with open('config.json') as config_file: |
|
config = json.load(config_file) |
|
|
|
with open("config2.json", "r") as file: |
|
config2 = json.load(file) |
|
|
|
PERSIST_DOC_DIRECTORY = config["persist_doc_directory"] |
|
PERSIST_CODE_DIRECTORY =config["persist_code_directory"] |
|
CHUNK_SIZE = config["chunk_size"] |
|
CHUNK_OVERLAP = config["chunk_overlap"] |
|
EMBEDDING_MODEL_NAME = config["embedding_model"] |
|
LLM_MODEL_NAME = config["llm_model"] |
|
LLM_TEMPERATURE = config["llm_temperature"] |
|
GITLAB_API_URL = config["gitlab_api_url"] |
|
HF_SPACE_NAME = config["hf_space_name"] |
|
DATA_DIR = config["data_dir"] |
|
|
|
GROQ_API_KEY = os.environ["GROQ_API_KEY"] |
|
HF_TOKEN = os.environ["HF_Token"] |
|
|
|
|
|
|
|
login(HF_TOKEN) |
|
api = HfApi() |
|
|
|
|
|
|
|
def split_python_code_into_chunks(texts, file_paths): |
|
chunks = [] |
|
for text, file_path in zip(texts, file_paths): |
|
document_chunks = chunk_python_code_with_metadata(text, file_path) |
|
chunks.extend(document_chunks) |
|
return chunks |
|
|
|
|
|
|
|
def split_into_chunks(texts, references, chunk_size, chunk_overlap): |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) |
|
chunks = [] |
|
|
|
for text, reference in zip(texts, references): |
|
chunks.extend([ |
|
Document( |
|
page_content=chunk, |
|
metadata={ |
|
"source": reference, |
|
"usage": "doc" |
|
} |
|
) |
|
for chunk in text_splitter.split_text(text) |
|
]) |
|
return chunks |
|
|
|
|
|
|
|
def embed_documents_into_vectorstore(chunks, model_name, persist_directory): |
|
print("Start setup_vectorstore_function") |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name) |
|
vectorstore = get_chroma_vectorstore(embedding_model, persist_directory) |
|
vectorstore.add_documents(chunks) |
|
return vectorstore |
|
|
|
|
|
def setup_llm(model_name, temperature, api_key): |
|
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key) |
|
return llm |
|
|
|
|
|
def rag_workflow(query): |
|
""" |
|
RAGChain class to perform the complete RAG workflow. |
|
""" |
|
|
|
rag_chain = RAGChain(llm, vector_store) |
|
|
|
|
|
|
|
code_library_usage_prediction = rag_chain.predict_library_usage(query) |
|
print(f"Predicted library usage: {code_library_usage_prediction}") |
|
|
|
|
|
|
|
kadiAPY_doc_documents, kadiAPY_code_documents = rag_chain.retrieve_contexts(query, code_library_usage_prediction) |
|
print("Retrieved Document Contexts:", kadiAPY_doc_documents) |
|
print("Retrieved Code Contexts:", kadiAPY_code_documents) |
|
|
|
|
|
formatted_doc_snippets = rag_chain.format_documents(kadiAPY_doc_documents) |
|
formatted_code_snippets = rag_chain.format_documents(kadiAPY_code_documents) |
|
print("FORMATTED Retrieved Document Contexts:", formatted_doc_snippets) |
|
print("FORMATTED Retrieved Code Contexts:" , formatted_code_snippets) |
|
print(formatted_code_snippets) |
|
|
|
response = rag_chain.generate_response(query, formatted_doc_snippets, formatted_code_snippets) |
|
print("Generated Response:", response) |
|
|
|
return response |
|
|
|
|
|
def initialize(): |
|
global vector_store, chunks, llm |
|
|
|
|
|
download_and_upload_kadiAPY_repo_to_huggingfacespace( |
|
api_url=config2["gitlab"]["api_url"], |
|
project_id=config2["gitlab"]["project"]["id"], |
|
version=config2["gitlab"]["project"]["version"] |
|
) |
|
|
|
code_texts, code_references = extract_files_and_filepath_from_dir(DATA_DIR, ['kadi_apy'], []) |
|
doc_texts, doc_references = extract_files_and_filepath_from_dir(DATA_DIR, ['docs/source/'], []) |
|
|
|
print("LEEEEEEEEEEEENGTH of code_texts: ", len(code_texts)) |
|
print("LEEEEEEEEEEEENGTH of doc_files: ", len(doc_texts)) |
|
|
|
code_chunks = split_python_code_into_chunks(code_texts, code_references) |
|
doc_chunks = split_into_chunks(doc_texts, doc_references, CHUNK_SIZE, CHUNK_OVERLAP) |
|
|
|
print(f"Total number of code_chunks: {len(code_chunks)}") |
|
print(f"Total number of doc_chunks: {len(doc_chunks)}") |
|
|
|
filename = "test" |
|
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}") |
|
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY) |
|
|
|
from langchain_community.document_loaders import TextLoader |
|
|
|
initialize() |
|
|
|
|
|
|
|
def check_input_text(text): |
|
if not text: |
|
gr.Warning("Please input a question.") |
|
raise TypeError |
|
return True |
|
|
|
def add_text(history, text): |
|
history = history + [(text, None)] |
|
yield history, "" |
|
|
|
|
|
import gradio as gr |
|
|
|
|
|
def bot_kadi(history): |
|
user_query = history[-1][0] |
|
response = rag_workflow(user_query) |
|
history[-1] = (user_query, response) |
|
|
|
yield history |
|
|
|
def main(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("## KadiAPY - AI Coding-Assistant") |
|
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") |
|
|
|
with gr.Tab("KadiAPY - AI Assistant"): |
|
with gr.Row(): |
|
with gr.Column(scale=10): |
|
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) |
|
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
clear_btn = gr.Button("Clear", variant="stop") |
|
|
|
gr.Examples( |
|
examples=[ |
|
"Who is working on Kadi4Mat?", |
|
"How do i install the Kadi-Apy library?", |
|
"How do i install the Kadi-Apy library for development?", |
|
"I need a method to upload a file to a record", |
|
], |
|
inputs=user_txt, |
|
outputs=chatbot, |
|
fn=add_text, |
|
label="Try asking...", |
|
cache_examples=False, |
|
examples_per_page=3, |
|
) |
|
|
|
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
clear_btn.click(lambda: None, None, chatbot, queue=False) |
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |