|
import os |
|
import json |
|
import gradio as gr |
|
|
|
from huggingface_hub import HfApi, login |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from dotenv import load_dotenv |
|
from langchain.docstore.document import Document |
|
from langchain.schema import Document |
|
|
|
from chunking import chunk_pythoncode_and_add_metadata |
|
from chunking import chunk_text_and_add_metadata |
|
from vectorstore import get_chroma_vectorstore |
|
from download_repo import download_gitlab_repo_to_hfspace |
|
from process_repo import extract_repo_files |
|
from ragchain import RAGChain |
|
from llm import get_groq_llm |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
with open("config.json", "r") as file: |
|
config = json.load(file) |
|
|
|
GROQ_API_KEY = os.environ["GROQ_API_KEY"] |
|
HF_TOKEN = os.environ["HF_Token"] |
|
|
|
|
|
VECTORSTORE_DIRECTORY = config["vectorstore_directory"] |
|
CHUNK_SIZE = config["chunking"]["chunk_size"] |
|
CHUNK_OVERLAP = config["chunking"]["chunk_overlap"] |
|
|
|
EMBEDDING_MODEL_NAME = config["embedding_model"]["name"] |
|
EMBEDDING_MODEL_VERSION = config["embedding_model"]["version"] |
|
|
|
LLM_MODEL_NAME = config["llm_model"]["name"] |
|
LLM_MODEL_TEMPERATURE = config["llm_model"]["temperature"] |
|
|
|
GITLAB_API_URL = config["gitlab"]["api_url"] |
|
GITLAB_PROJECT_ID = config["gitlab"]["project id"] |
|
GITLAB_PROJECT_VERSION = config["gitlab"]["project version"] |
|
|
|
DATA_DIR = config["data_dir"] |
|
HF_SPACE_NAME = config["hf_space_name"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
login(HF_TOKEN) |
|
api = HfApi() |
|
|
|
|
|
|
|
|
|
|
|
def embed_documents_into_vectorstore(chunks, model_name, persist_directory): |
|
print("Start setup_vectorstore_function") |
|
embedding_model = HuggingFaceEmbeddings(model_name=model_name) |
|
vectorstore = get_chroma_vectorstore(embedding_model, persist_directory) |
|
vectorstore.add_documents(chunks) |
|
return vectorstore |
|
|
|
def rag_workflow(query): |
|
""" |
|
RAGChain class to perform the complete RAG workflow. |
|
""" |
|
|
|
rag_chain = RAGChain(llm, vector_store) |
|
|
|
|
|
""" |
|
Pre-Retrieval-Stage |
|
""" |
|
|
|
code_library_usage_prediction = rag_chain.predict_library_usage(query) |
|
print(f"Predicted library usage: {code_library_usage_prediction}") |
|
|
|
rewritten_query = rag_chain.rewrite_query(query) |
|
print(f"\n\n Rewritten query: {rewritten_query}\n\n") |
|
|
|
""" |
|
Retrieval-Stage |
|
""" |
|
kadiAPY_doc_documents = rag_chain.retrieve_contexts(query, k=5, filter={"usage": "doc"}) |
|
kadiAPY_code_documents = rag_chain.retrieve_contexts(str(rewritten_query.content), k=3, filter={"usage": code_library_usage_prediction}) |
|
|
|
print("Retrieved Document Contexts:", kadiAPY_doc_documents) |
|
print("Retrieved Code Contexts:", kadiAPY_code_documents) |
|
|
|
|
|
|
|
""" |
|
Pre-Generation-Stage |
|
Adding each doc's metadata to the retrieved content (docs & code snippets) |
|
""" |
|
formatted_doc_snippets = rag_chain.format_documents(kadiAPY_doc_documents) |
|
formatted_code_snippets = rag_chain.format_documents(kadiAPY_code_documents) |
|
|
|
|
|
|
|
""" |
|
Generation-Stage |
|
""" |
|
response = rag_chain.generate_response(query, formatted_doc_snippets, formatted_code_snippets) |
|
print("Generated Response:", response) |
|
|
|
return response |
|
|
|
|
|
def initialize(): |
|
global vector_store, chunks, llm |
|
|
|
|
|
download_gitlab_repo_to_hfspace(GITLAB_API_URL, GITLAB_PROJECT_ID, GITLAB_PROJECT_VERSION) |
|
|
|
code_texts, code_references = extract_repo_files(DATA_DIR, ['kadi_apy'], []) |
|
|
|
doc_texts, doc_references = extract_repo_files(DATA_DIR, [], []) |
|
|
|
print("LEEEEEEEEEEEENGTH of code_texts: ", len(code_texts)) |
|
print("LEEEEEEEEEEEENGTH of doc_files: ", len(doc_texts)) |
|
|
|
code_chunks = chunk_pythoncode_and_add_metadata(code_texts, code_references) |
|
doc_chunks = chunk_text_and_add_metadata(doc_texts, doc_references, CHUNK_SIZE, CHUNK_OVERLAP) |
|
|
|
print(f"Total number of code_chunks: {len(code_chunks)}") |
|
print(f"Total number of doc_chunks: {len(doc_chunks)}") |
|
|
|
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, VECTORSTORE_DIRECTORY) |
|
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) |
|
|
|
from langchain_community.document_loaders import TextLoader |
|
|
|
initialize() |
|
|
|
|
|
|
|
def check_input_text(text): |
|
if not text: |
|
gr.Warning("Please input a question.") |
|
raise TypeError |
|
return True |
|
|
|
def add_text(history, text): |
|
history = history + [(text, None)] |
|
yield history, "" |
|
|
|
|
|
import gradio as gr |
|
|
|
|
|
def bot_kadi(history): |
|
user_query = history[-1][0] |
|
response = rag_workflow(user_query) |
|
history[-1] = (user_query, response) |
|
|
|
yield history |
|
|
|
def main(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("## KadiAPY - AI Coding-Assistant") |
|
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") |
|
|
|
with gr.Tab("KadiAPY - AI Assistant"): |
|
with gr.Row(): |
|
with gr.Column(scale=10): |
|
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) |
|
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
clear_btn = gr.Button("Clear", variant="stop") |
|
|
|
gr.Examples( |
|
examples=[ |
|
"Who is working on Kadi4Mat?", |
|
"How do i install the Kadi-Apy library?", |
|
"How do i install the Kadi-Apy library for development?", |
|
"I need a method to upload a file to a record", |
|
], |
|
inputs=user_txt, |
|
outputs=chatbot, |
|
fn=add_text, |
|
label="Try asking...", |
|
cache_examples=False, |
|
examples_per_page=3, |
|
) |
|
|
|
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
clear_btn.click(lambda: None, None, chatbot, queue=False) |
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |