|
import os |
|
import json |
|
import gradio as gr |
|
import streamlit as st |
|
from huggingface_hub import HfApi, login |
|
from dotenv import load_dotenv |
|
|
|
from llm import get_groq_llm |
|
from vectorstore import get_chroma_vectorstore |
|
from embeddings import get_SFR_Code_embedding_model |
|
from kadiApy_ragchain import KadiApyRagchain |
|
|
|
|
|
load_dotenv() |
|
|
|
vectorstore_path = "data/vectorstore" |
|
|
|
GROQ_API_KEY = os.environ["GROQ_API_KEY"] |
|
HF_TOKEN = os.environ["HF_Token"] |
|
|
|
with open("config.json", "r") as file: |
|
config = json.load(file) |
|
|
|
login(HF_TOKEN) |
|
hf_api = HfApi() |
|
|
|
|
|
LLM_MODEL_NAME = config["llm_model_name"] |
|
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"]) |
|
|
|
def initialize(): |
|
global kadiAPY_ragchain |
|
|
|
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path) |
|
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) |
|
|
|
kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore) |
|
|
|
initialize() |
|
|
|
|
|
|
|
def bot_kadi(history): |
|
user_query = history[-1][0] |
|
response = kadiAPY_ragchain.process_query(user_query) |
|
history[-1] = (user_query, response) |
|
|
|
yield history |
|
|
|
|
|
|
|
|
|
def check_input_text(text): |
|
if not text: |
|
gr.Warning("Please input a question.") |
|
raise TypeError |
|
return True |
|
|
|
def add_text(history, text): |
|
history = history + [(text, None)] |
|
yield history, "" |
|
|
|
|
|
import gradio as gr |
|
|
|
def main(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("## KadiAPY - AI Coding-Assistant") |
|
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") |
|
|
|
with gr.Tab("KadiAPY - AI Assistant"): |
|
with gr.Row(): |
|
with gr.Column(scale=10): |
|
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) |
|
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
clear_btn = gr.Button("Clear", variant="stop") |
|
|
|
gr.Examples( |
|
examples=[ |
|
"Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure", |
|
"I need a method to upload a file to a record. The id of the record is 3", |
|
], |
|
inputs=user_txt, |
|
outputs=chatbot, |
|
fn=add_text, |
|
label="Try asking...", |
|
cache_examples=False, |
|
examples_per_page=3, |
|
) |
|
|
|
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
clear_btn.click(lambda: None, None, chatbot, queue=False) |
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |