bupa1018's picture
Update app.py
72151d9
raw
history blame
19.2 kB
import os
import json
import gradio as gr
import zipfile
import tempfile
import requests
import urllib.parse
import io
from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document
# Load environment variables from .env file
load_dotenv()
# Load configuration from JSON file
with open('config.json') as config_file:
config = json.load(config_file)
PERSIST_DOC_DIRECTORY = config["persist_doc_directory"]
PERSIST_CODE_DIRECTORY =config["persist_code_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
REPOSITORY_DIRECTORY = config["repository_directory"]
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
login(HF_TOKEN)
api = HfApi()
def load_project_id(json_file):
with open(json_file, 'r') as f:
data = json.load(f)
return data['project_id']
def download_gitlab_repo():
print("Start the upload_gitRepository function")
project_id = load_project_id('repository_ids.json')
encoded_project_id = urllib.parse.quote_plus(project_id)
# Define the URL to download the repository archive
archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip"
# Download the repository archive
response = requests.get(archive_url)
archive_bytes = io.BytesIO(response.content)
# Retrieve the original file name from the response headers
content_disposition = response.headers.get('content-disposition')
if content_disposition:
filename = content_disposition.split('filename=')[-1].strip('\"')
else:
filename = 'archive.zip' # Fallback to a default name if not found
# Check if the file already exists in the repository
existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space')
target_path = f"{REPOSITORY_DIRECTORY}/{filename}"
print(f"Target Path: '{target_path}'")
print(f"Existing Files: {[repr(file) for file in existing_files]}")
if target_path in existing_files:
print(f"File '{target_path}' already exists in the repository. Skipping upload...")
else:
# Upload the ZIP file to the new folder in the Hugging Face space repository
print("Uploading File to directory:")
print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}") # Show a preview of bytes
print(f"Target Path in Repo: '{target_path}'")
api.upload_file(
path_or_fileobj=archive_bytes,
path_in_repo=target_path,
repo_id=HF_SPACE_NAME,
repo_type='space'
)
print("Upload complete")
def get_all_files_in_folder(temp_dir, partial_path):
all_files = []
print("inner method of get all files in folder")
target_dir = os.path.join(temp_dir, partial_path)
print(target_dir)
for root, dirs, files in os.walk(target_dir):
print(f"Files in current directory ({root}): {files}")
for file in files:
print(f"Processing file: {file}")
all_files.append(os.path.join(root, file))
return all_files
def get_file(temp_dir, file_path):
full_path = os.path.join(temp_dir, file_path)
return full_path
def process_directory(directory, partial_paths=None, file_paths=None):
all_texts = []
file_references = []
zip_files = [file for file in os.listdir(directory) if file.endswith('.zip')]
if not zip_files:
print("No zip file found in the directory.")
return all_texts, file_references
if len(zip_files) > 1:
print("More than one zip file found.")
return all_texts, file_references
else:
zip_file_path = os.path.join(directory, zip_files[0])
# Create a temporary directory for the zip file
with tempfile.TemporaryDirectory() as tmpdirname:
# Unzip the file into the temporary directory
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
zip_ref.extractall(tmpdirname)
files = []
print("tmpdirname: " , tmpdirname)
unzipped_root = os.listdir(tmpdirname)
print("unzipped_root ", unzipped_root)
if len(unzipped_root) == 1 and os.path.isdir(os.path.join(tmpdirname, unzipped_root[0])):
tmpsubdirpath= os.path.join(tmpdirname, unzipped_root[0])
else:
tmpsubdirpath = tmpdirname
if not partial_paths and not file_paths:
for root, _, files_list in os.walk(tmpdirname):
for file in files_list:
files.append(os.path.join(root, file))
else:
if partial_paths:
for partial_path in partial_paths:
files += get_all_files_in_folder(tmpsubdirpath, partial_path)
if file_paths:
files += [get_file(tmpsubdirpath, file_path) for file_path in file_paths]
print(f"Total number of files: {len(files)}")
for file_path in files:
#print(f"Paths of files: {iles}")
file_ext = os.path.splitext(file_path)[1]
if os.path.getsize(file_path) == 0:
print(f"Skipping an empty file: {file_path}")
continue
with open(file_path, 'rb') as f:
if file_ext in ['.rst', '.md', '.txt', '.html', '.json', '.yaml', '.py']:
text = f.read().decode('utf-8')
elif file_ext in ['.svg']:
text = f"SVG file content from {file_path}"
elif file_ext in ['.png', '.ico']:
text = f"Image metadata from {file_path}"
else:
continue
all_texts.append(text)
file_references.append(file_path)
return all_texts, file_references
import ast
def get_source_segment(source_lines, node):
start_line, start_col = node.lineno - 1, node.col_offset
end_line = node.end_lineno - 1 if hasattr(node, 'end_lineno') else node.lineno - 1
end_col = node.end_col_offset if hasattr(node, 'end_col_offset') else len(source_lines[end_line])
lines = source_lines[start_line:end_line + 1]
lines[0] = lines[0][start_col:]
lines[-1] = lines[-1][:end_col]
return ''.join(lines)
from langchain.schema import Document
def chunk_python_file_content(content, char_limit=1572):
source_lines = content.splitlines(keepends=True)
# Parse the content into an abstract syntax tree (AST)
tree = ast.parse(content)
chunks = []
current_chunk = ""
current_chunk_size = 0
# Find all class definitions and top-level functions in the AST
class_nodes = [node for node in ast.walk(tree) if isinstance(node, ast.ClassDef)]
for class_node in class_nodes:
method_nodes = [node for node in class_node.body if isinstance(node, ast.FunctionDef)]
if method_nodes:
first_method_start_line = method_nodes[0].lineno - 1
class_def_lines = source_lines[class_node.lineno - 1:first_method_start_line]
else:
class_def_lines = source_lines[class_node.lineno - 1:class_node.end_lineno]
class_def = ''.join(class_def_lines)
class_def_size = len(class_def)
# Add class definition to the current chunk if it fits
if current_chunk_size + class_def_size <= char_limit:
current_chunk += f"{class_def.strip()}\n"
current_chunk_size += class_def_size
else:
# Start a new chunk if the class definition exceeds the limit
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = ""
current_chunk_size = 0
current_chunk += f"{class_def.strip()}\n"
current_chunk_size = class_def_size
for method_node in method_nodes:
method_def = get_source_segment(source_lines, method_node)
method_def_size = len(method_def)
# Add method definition to the current chunk if it fits
if current_chunk_size + method_def_size <= char_limit:
current_chunk += f"# This is a class method of class: {class_node.name}\n{method_def.strip()}\n"
current_chunk_size += method_def_size
else:
# Start a new chunk if the method definition exceeds the limit
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = ""
current_chunk_size = 0
current_chunk += f"# This is a class method of class: {class_node.name}\n{method_def.strip()}\n"
current_chunk_size = method_def_size
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
# Split python code into chunks
def split_pythoncode_into_chunks(texts, references, chunk_size, chunk_overlap):
chunks = []
for text, reference in zip(texts, references):
file_chunks = chunk_python_file_content(text, char_limit=chunk_size)
for chunk in file_chunks:
document = Document(page_content=chunk, metadata={"source": reference})
chunks.append(document)
print(f"Total number of chunks: {len(chunks)}")
return chunks
# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = []
for text, reference in zip(texts, references):
chunks.extend([Document(page_content=chunk, metadata={"source": reference}) for chunk in text_splitter.split_text(text)])
print(f"Total number of chunks: {len(chunks)}")
return chunks
# Setup Vectorstore
#def setup_vectorstore(chunks, model_name):
# print("Start setup_vectorstore_function")
# embedding_model = HuggingFaceEmbeddings(model_name=model_name)
# vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=persist_directory)
# vectorstore.persist()
# print("test1", vectorstore._persist_directory)
# print("test2",vectorstore.__dir__)
# return vectorstore
def setup_vectorstore(chunks, model_name):
print("Start setup_vectorstore_function")
# Create a temporary directory to use as the persist_directory
with tempfile.TemporaryDirectory() as temp_dir:
print(f"Using temporary directory: {temp_dir}")
# Initialize the embedding model
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
# Set up the vectorstore with the temporary directory
vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=temp_dir)
vectorstore.persist()
# Optionally, display the persist directory for debugging
print("Persist directory:", vectorstore._persist_directory)
print("Available methods in vectorstore:", dir(vectorstore))
# At this point, you can use your API upload method to upload the persisted vectorstore files
for root, _, files in os.walk(temp_dir):
for file_name in files:
file_path = os.path.join(root, file_name)
target_path_in_repo = os.path.relpath(file_path, temp_dir)
print(f"Uploading file: {file_path} -> {target_path_in_repo}")
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=target_path_in_repo,
repo_id=HF_SPACE_NAME,
repo_type="space"
)
print(f"Uploaded {file_path} to {target_path_in_repo}")
print("All files uploaded successfully!")
# Setup LLM
def setup_llm(model_name, temperature, api_key):
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
return llm
def retrieve_from_vectorstore(vectorstore, query, k):
results = vectorstore.similarity_search(query, k=k)
chunks_with_references = [(result.page_content, result.metadata["source"]) for result in results]
# Print the chosen chunks and their sources to the console
print("\nChosen chunks and their sources for the query:")
for chunk, source in chunks_with_references:
print(f"Source: {source}\nChunk: {chunk}\n")
print("-" * 50)
return chunks_with_references
def rag_workflow(query):
retrieved_doc_chunks = retrieve_from_vectorstore (docstore, query, k=5)
retrieved_code_chunks = retrieve_from_vectorstore(codestore, query, k=5)
doc_context = "\n\n".join([doc_chunk for doc_chunk, _ in retrieved_doc_chunks])
code_context = "\n\n".join([code_chunk for code_chunk, _ in retrieved_code_chunks])
doc_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_doc_chunks)])
code_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_code_chunks)])
print("Document Chunks:\n")
print("\n\n".join(["="*80 + "\n" + doc_chunk for doc_chunk, _ in retrieved_doc_chunks]))
print("\nDocument References:\n")
print(doc_references)
print("\n" + "="*80 + "\n") # Separator between doc and code
print("Code Chunks:\n")
print("\n\n".join(["="*80 + "\n" + code_chunk for code_chunk, _ in retrieved_code_chunks]))
print("\nCode References:\n")
print(code_references)
# print(f"Context for the query:\n{doc_context}\n")
# print(f"References for the query:\n{references}\n")
prompt = f"""You are an expert python developer. You are assisting in generating code for users who wants to make use of "kadi-apy", an API library.
"Doc-context:" provides you with information how to use this API library by givnig code examples and code documentation.
"Code-context:" provides you information of API methods and classes from the "kadi-apy" library.
Based on the retrieved contexts and the guidelines answer the query.
General Guidelines:
- If no related information is found from the contexts to answer the query, reply that you do not know.
Guidelines when generating code:
- First display the full code and then follow with a well structured explanation of the generated code.
Doc-context:
{doc_context}
Code-context:
{code_context}
Query:
{query}
"""
response = llm.invoke(prompt)
return response.content
def initialize():
global docstore, codestore, chunks, llm
#code_partial_paths = ['kadi_apy/lib/']
#code_file_path = []
doc_partial_paths = []
#doc_partial_paths = ['docs/source/setup/']
doc_file_paths = ['docs/source/usage/lib.rst']
#code_files, code_file_references = process_directory(REPOSITORY_DIRECTORY, code_partial_paths, code_file_path)
doc_files, doc_file_references = process_directory(REPOSITORY_DIRECTORY, doc_partial_paths, doc_file_paths)
#code_chunks = split_pythoncode_into_chunks(code_files, code_file_references, 1500, 0)
doc_chunks = split_into_chunks(doc_files, doc_file_references, CHUNK_SIZE, CHUNK_OVERLAP)
#print(f"Total number of code_chunks: {len(code_chunks)}")
print(f"Total number of doc_chunks: {len(doc_chunks)}")
docstore = setup_vectorstore(doc_chunks, EMBEDDING_MODEL_NAME)
#codestore = setup_vectorstore(code_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
#llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
initialize()
# Gradio utils
def check_input_text(text):
if not text:
gr.Warning("Please input a question.")
raise TypeError
return True
def add_text(history, text):
history = history + [(text, None)]
yield history, ""
import gradio as gr
def bot_kadi(history):
user_query = history[-1][0]
response = rag_workflow(user_query)
history[-1] = (user_query, response)
yield history
def main():
with gr.Blocks() as demo:
gr.Markdown("## Kadi4Mat - AI Chat-Bot")
gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM")
with gr.Tab("Kadi4Mat - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Who is working on Kadi4Mat?",
"How do i install the Kadi-Apy library?",
"How do i install the Kadi-Apy library for development?",
"I need a method to upload a file to a record",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
#user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
#submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation])
clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch()
if __name__ == "__main__":
main()