Spaces:
Sleeping
Sleeping
import os | |
import json | |
import gradio as gr | |
import zipfile | |
import tempfile | |
import requests | |
import urllib.parse | |
import io | |
from huggingface_hub import HfApi, login | |
from PyPDF2 import PdfReader | |
from langchain_huggingface import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import Chroma | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_groq import ChatGroq | |
from dotenv import load_dotenv | |
from langchain.docstore.document import Document | |
# Load environment variables from .env file | |
load_dotenv() | |
# Load configuration from JSON file | |
with open('config.json') as config_file: | |
config = json.load(config_file) | |
PERSIST_DOC_DIRECTORY = config["persist_doc_directory"] | |
PERSIST_CODE_DIRECTORY =config["persist_code_directory"] | |
CHUNK_SIZE = config["chunk_size"] | |
CHUNK_OVERLAP = config["chunk_overlap"] | |
EMBEDDING_MODEL_NAME = config["embedding_model"] | |
LLM_MODEL_NAME = config["llm_model"] | |
LLM_TEMPERATURE = config["llm_temperature"] | |
GITLAB_API_URL = config["gitlab_api_url"] | |
HF_SPACE_NAME = config["hf_space_name"] | |
REPOSITORY_DIRECTORY = config["repository_directory"] | |
GROQ_API_KEY = os.environ["GROQ_API_KEY"] | |
HF_TOKEN = os.environ["HF_Token"] | |
login(HF_TOKEN) | |
api = HfApi() | |
def load_project_id(json_file): | |
with open(json_file, 'r') as f: | |
data = json.load(f) | |
return data['project_id'] | |
def download_gitlab_repo(): | |
print("Start the upload_gitRepository function") | |
project_id = load_project_id('repository_ids.json') | |
encoded_project_id = urllib.parse.quote_plus(project_id) | |
# Define the URL to download the repository archive | |
archive_url = f"{GITLAB_API_URL}/projects/{encoded_project_id}/repository/archive.zip" | |
# Download the repository archive | |
response = requests.get(archive_url) | |
archive_bytes = io.BytesIO(response.content) | |
# Retrieve the original file name from the response headers | |
content_disposition = response.headers.get('content-disposition') | |
if content_disposition: | |
filename = content_disposition.split('filename=')[-1].strip('\"') | |
else: | |
filename = 'archive.zip' # Fallback to a default name if not found | |
# Check if the file already exists in the repository | |
existing_files = api.list_repo_files(repo_id=HF_SPACE_NAME, repo_type='space') | |
target_path = f"{REPOSITORY_DIRECTORY}/{filename}" | |
print(f"Target Path: '{target_path}'") | |
print(f"Existing Files: {[repr(file) for file in existing_files]}") | |
if target_path in existing_files: | |
print(f"File '{target_path}' already exists in the repository. Skipping upload...") | |
else: | |
# Upload the ZIP file to the new folder in the Hugging Face space repository | |
print("Uploading File to directory:") | |
print(f"Archive Bytes: {repr(archive_bytes.getvalue())[:100]}") # Show a preview of bytes | |
print(f"Target Path in Repo: '{target_path}'") | |
api.upload_file( | |
path_or_fileobj=archive_bytes, | |
path_in_repo=target_path, | |
repo_id=HF_SPACE_NAME, | |
repo_type='space' | |
) | |
print("Upload complete") | |
def get_all_files_in_folder(temp_dir, partial_path): | |
all_files = [] | |
print("inner method of get all files in folder") | |
target_dir = os.path.join(temp_dir, partial_path) | |
print(target_dir) | |
for root, dirs, files in os.walk(target_dir): | |
print(f"Files in current directory ({root}): {files}") | |
for file in files: | |
print(f"Processing file: {file}") | |
all_files.append(os.path.join(root, file)) | |
return all_files | |
def get_file(temp_dir, file_path): | |
full_path = os.path.join(temp_dir, file_path) | |
return full_path | |
def process_directory(directory, partial_paths=None, file_paths=None): | |
all_texts = [] | |
file_references = [] | |
zip_files = [file for file in os.listdir(directory) if file.endswith('.zip')] | |
if not zip_files: | |
print("No zip file found in the directory.") | |
return all_texts, file_references | |
if len(zip_files) > 1: | |
print("More than one zip file found.") | |
return all_texts, file_references | |
else: | |
zip_file_path = os.path.join(directory, zip_files[0]) | |
# Create a temporary directory for the zip file | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
# Unzip the file into the temporary directory | |
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: | |
zip_ref.extractall(tmpdirname) | |
files = [] | |
print("tmpdirname: " , tmpdirname) | |
unzipped_root = os.listdir(tmpdirname) | |
print("unzipped_root ", unzipped_root) | |
if len(unzipped_root) == 1 and os.path.isdir(os.path.join(tmpdirname, unzipped_root[0])): | |
tmpsubdirpath= os.path.join(tmpdirname, unzipped_root[0]) | |
else: | |
tmpsubdirpath = tmpdirname | |
if not partial_paths and not file_paths: | |
for root, _, files_list in os.walk(tmpdirname): | |
for file in files_list: | |
files.append(os.path.join(root, file)) | |
else: | |
if partial_paths: | |
for partial_path in partial_paths: | |
files += get_all_files_in_folder(tmpsubdirpath, partial_path) | |
if file_paths: | |
files += [get_file(tmpsubdirpath, file_path) for file_path in file_paths] | |
print(f"Total number of files: {len(files)}") | |
for file_path in files: | |
#print(f"Paths of files: {iles}") | |
file_ext = os.path.splitext(file_path)[1] | |
if os.path.getsize(file_path) == 0: | |
print(f"Skipping an empty file: {file_path}") | |
continue | |
with open(file_path, 'rb') as f: | |
if file_ext in ['.rst', '.md', '.txt', '.html', '.json', '.yaml', '.py']: | |
text = f.read().decode('utf-8') | |
elif file_ext in ['.svg']: | |
text = f"SVG file content from {file_path}" | |
elif file_ext in ['.png', '.ico']: | |
text = f"Image metadata from {file_path}" | |
else: | |
continue | |
all_texts.append(text) | |
file_references.append(file_path) | |
return all_texts, file_references | |
import ast | |
def get_source_segment(source_lines, node): | |
start_line, start_col = node.lineno - 1, node.col_offset | |
end_line = node.end_lineno - 1 if hasattr(node, 'end_lineno') else node.lineno - 1 | |
end_col = node.end_col_offset if hasattr(node, 'end_col_offset') else len(source_lines[end_line]) | |
lines = source_lines[start_line:end_line + 1] | |
lines[0] = lines[0][start_col:] | |
lines[-1] = lines[-1][:end_col] | |
return ''.join(lines) | |
from langchain.schema import Document | |
def chunk_python_file_content(content, char_limit=1572): | |
source_lines = content.splitlines(keepends=True) | |
# Parse the content into an abstract syntax tree (AST) | |
tree = ast.parse(content) | |
chunks = [] | |
current_chunk = "" | |
current_chunk_size = 0 | |
# Find all class definitions and top-level functions in the AST | |
class_nodes = [node for node in ast.walk(tree) if isinstance(node, ast.ClassDef)] | |
for class_node in class_nodes: | |
method_nodes = [node for node in class_node.body if isinstance(node, ast.FunctionDef)] | |
if method_nodes: | |
first_method_start_line = method_nodes[0].lineno - 1 | |
class_def_lines = source_lines[class_node.lineno - 1:first_method_start_line] | |
else: | |
class_def_lines = source_lines[class_node.lineno - 1:class_node.end_lineno] | |
class_def = ''.join(class_def_lines) | |
class_def_size = len(class_def) | |
# Add class definition to the current chunk if it fits | |
if current_chunk_size + class_def_size <= char_limit: | |
current_chunk += f"{class_def.strip()}\n" | |
current_chunk_size += class_def_size | |
else: | |
# Start a new chunk if the class definition exceeds the limit | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
current_chunk = "" | |
current_chunk_size = 0 | |
current_chunk += f"{class_def.strip()}\n" | |
current_chunk_size = class_def_size | |
for method_node in method_nodes: | |
method_def = get_source_segment(source_lines, method_node) | |
method_def_size = len(method_def) | |
# Add method definition to the current chunk if it fits | |
if current_chunk_size + method_def_size <= char_limit: | |
current_chunk += f"# This is a class method of class: {class_node.name}\n{method_def.strip()}\n" | |
current_chunk_size += method_def_size | |
else: | |
# Start a new chunk if the method definition exceeds the limit | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
current_chunk = "" | |
current_chunk_size = 0 | |
current_chunk += f"# This is a class method of class: {class_node.name}\n{method_def.strip()}\n" | |
current_chunk_size = method_def_size | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
return chunks | |
# Split python code into chunks | |
def split_pythoncode_into_chunks(texts, references, chunk_size, chunk_overlap): | |
chunks = [] | |
for text, reference in zip(texts, references): | |
file_chunks = chunk_python_file_content(text, char_limit=chunk_size) | |
for chunk in file_chunks: | |
document = Document(page_content=chunk, metadata={"source": reference}) | |
chunks.append(document) | |
print(f"Total number of chunks: {len(chunks)}") | |
return chunks | |
# Split text into chunks | |
def split_into_chunks(texts, references, chunk_size, chunk_overlap): | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) | |
chunks = [] | |
for text, reference in zip(texts, references): | |
chunks.extend([Document(page_content=chunk, metadata={"source": reference}) for chunk in text_splitter.split_text(text)]) | |
print(f"Total number of chunks: {len(chunks)}") | |
return chunks | |
# Setup Vectorstore | |
#def setup_vectorstore(chunks, model_name): | |
# print("Start setup_vectorstore_function") | |
# embedding_model = HuggingFaceEmbeddings(model_name=model_name) | |
# vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=persist_directory) | |
# vectorstore.persist() | |
# print("test1", vectorstore._persist_directory) | |
# print("test2",vectorstore.__dir__) | |
# return vectorstore | |
def setup_vectorstore(chunks, model_name): | |
print("Start setup_vectorstore_function") | |
# Create a temporary directory to use as the persist_directory | |
with tempfile.TemporaryDirectory() as temp_dir: | |
print(f"Using temporary directory: {temp_dir}") | |
# Initialize the embedding model | |
embedding_model = HuggingFaceEmbeddings(model_name=model_name) | |
# Set up the vectorstore with the temporary directory | |
vectorstore = Chroma.from_documents(chunks, embedding=embedding_model, persist_directory=temp_dir) | |
vectorstore.persist() | |
# Optionally, display the persist directory for debugging | |
print("Persist directory:", vectorstore._persist_directory) | |
print("Available methods in vectorstore:", dir(vectorstore)) | |
# At this point, you can use your API upload method to upload the persisted vectorstore files | |
for root, _, files in os.walk(temp_dir): | |
for file_name in files: | |
file_path = os.path.join(root, file_name) | |
target_path_in_repo = os.path.relpath(file_path, temp_dir) | |
print(f"Uploading file: {file_path} -> {target_path_in_repo}") | |
api.upload_file( | |
path_or_fileobj=file_path, | |
path_in_repo=target_path_in_repo, | |
repo_id=HF_SPACE_NAME, | |
repo_type="space" | |
) | |
print(f"Uploaded {file_path} to {target_path_in_repo}") | |
print("All files uploaded successfully!") | |
# Setup LLM | |
def setup_llm(model_name, temperature, api_key): | |
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key) | |
return llm | |
def retrieve_from_vectorstore(vectorstore, query, k): | |
results = vectorstore.similarity_search(query, k=k) | |
chunks_with_references = [(result.page_content, result.metadata["source"]) for result in results] | |
# Print the chosen chunks and their sources to the console | |
print("\nChosen chunks and their sources for the query:") | |
for chunk, source in chunks_with_references: | |
print(f"Source: {source}\nChunk: {chunk}\n") | |
print("-" * 50) | |
return chunks_with_references | |
def rag_workflow(query): | |
retrieved_doc_chunks = retrieve_from_vectorstore (docstore, query, k=5) | |
retrieved_code_chunks = retrieve_from_vectorstore(codestore, query, k=5) | |
doc_context = "\n\n".join([doc_chunk for doc_chunk, _ in retrieved_doc_chunks]) | |
code_context = "\n\n".join([code_chunk for code_chunk, _ in retrieved_code_chunks]) | |
doc_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_doc_chunks)]) | |
code_references = "\n".join([f"[{i+1}] {ref}" for i, (_, ref) in enumerate(retrieved_code_chunks)]) | |
print("Document Chunks:\n") | |
print("\n\n".join(["="*80 + "\n" + doc_chunk for doc_chunk, _ in retrieved_doc_chunks])) | |
print("\nDocument References:\n") | |
print(doc_references) | |
print("\n" + "="*80 + "\n") # Separator between doc and code | |
print("Code Chunks:\n") | |
print("\n\n".join(["="*80 + "\n" + code_chunk for code_chunk, _ in retrieved_code_chunks])) | |
print("\nCode References:\n") | |
print(code_references) | |
# print(f"Context for the query:\n{doc_context}\n") | |
# print(f"References for the query:\n{references}\n") | |
prompt = f"""You are an expert python developer. You are assisting in generating code for users who wants to make use of "kadi-apy", an API library. | |
"Doc-context:" provides you with information how to use this API library by givnig code examples and code documentation. | |
"Code-context:" provides you information of API methods and classes from the "kadi-apy" library. | |
Based on the retrieved contexts and the guidelines answer the query. | |
General Guidelines: | |
- If no related information is found from the contexts to answer the query, reply that you do not know. | |
Guidelines when generating code: | |
- First display the full code and then follow with a well structured explanation of the generated code. | |
Doc-context: | |
{doc_context} | |
Code-context: | |
{code_context} | |
Query: | |
{query} | |
""" | |
response = llm.invoke(prompt) | |
return response.content | |
def initialize(): | |
global docstore, codestore, chunks, llm | |
#code_partial_paths = ['kadi_apy/lib/'] | |
#code_file_path = [] | |
doc_partial_paths = [] | |
#doc_partial_paths = ['docs/source/setup/'] | |
doc_file_paths = ['docs/source/usage/lib.rst'] | |
#code_files, code_file_references = process_directory(REPOSITORY_DIRECTORY, code_partial_paths, code_file_path) | |
doc_files, doc_file_references = process_directory(REPOSITORY_DIRECTORY, doc_partial_paths, doc_file_paths) | |
#code_chunks = split_pythoncode_into_chunks(code_files, code_file_references, 1500, 0) | |
doc_chunks = split_into_chunks(doc_files, doc_file_references, CHUNK_SIZE, CHUNK_OVERLAP) | |
#print(f"Total number of code_chunks: {len(code_chunks)}") | |
print(f"Total number of doc_chunks: {len(doc_chunks)}") | |
docstore = setup_vectorstore(doc_chunks, EMBEDDING_MODEL_NAME) | |
#codestore = setup_vectorstore(code_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY) | |
#llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY) | |
initialize() | |
# Gradio utils | |
def check_input_text(text): | |
if not text: | |
gr.Warning("Please input a question.") | |
raise TypeError | |
return True | |
def add_text(history, text): | |
history = history + [(text, None)] | |
yield history, "" | |
import gradio as gr | |
def bot_kadi(history): | |
user_query = history[-1][0] | |
response = rag_workflow(user_query) | |
history[-1] = (user_query, response) | |
yield history | |
def main(): | |
with gr.Blocks() as demo: | |
gr.Markdown("## Kadi4Mat - AI Chat-Bot") | |
gr.Markdown("AI assistant for Kadi4Mat based on RAG architecture powered by LLM") | |
with gr.Tab("Kadi4Mat - AI Assistant"): | |
with gr.Row(): | |
with gr.Column(scale=10): | |
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) | |
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
submit_btn = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=1): | |
clear_btn = gr.Button("Clear", variant="stop") | |
gr.Examples( | |
examples=[ | |
"Who is working on Kadi4Mat?", | |
"How do i install the Kadi-Apy library?", | |
"How do i install the Kadi-Apy library for development?", | |
"I need a method to upload a file to a record", | |
], | |
inputs=user_txt, | |
outputs=chatbot, | |
fn=add_text, | |
label="Try asking...", | |
cache_examples=False, | |
examples_per_page=3, | |
) | |
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) | |
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) | |
#user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation]) | |
#submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot, doc_citation]) | |
clear_btn.click(lambda: None, None, chatbot, queue=False) | |
demo.launch() | |
if __name__ == "__main__": | |
main() |