bupa1018's picture
Update app.py
5b2e654
raw
history blame
8.48 kB
import os
import json
import gradio as gr
from huggingface_hub import HfApi, login
from PyPDF2 import PdfReader
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_groq import ChatGroq
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.schema import Document
from chunk_python_code import chunk_python_code_with_metadata
from vectorstore import get_chroma_vectorstore
from download_repo_to_huggingface import download_and_upload_kadiAPY_repo_to_huggingfacespace
from process_repo_zipfile import extract_files_and_filepath_from_dir
# Load environment variables from .env file
load_dotenv()
# Load configuration from JSON file
with open('config.json') as config_file:
config = json.load(config_file)
with open("config2.json", "r") as file:
config2 = json.load(file)
PERSIST_DOC_DIRECTORY = config["persist_doc_directory"]
PERSIST_CODE_DIRECTORY =config["persist_code_directory"]
CHUNK_SIZE = config["chunk_size"]
CHUNK_OVERLAP = config["chunk_overlap"]
EMBEDDING_MODEL_NAME = config["embedding_model"]
LLM_MODEL_NAME = config["llm_model"]
LLM_TEMPERATURE = config["llm_temperature"]
GITLAB_API_URL = config["gitlab_api_url"]
HF_SPACE_NAME = config["hf_space_name"]
DATA_DIR = config["data_dir"]
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
HF_TOKEN = os.environ["HF_Token"]
login(HF_TOKEN)
api = HfApi()
def split_python_code_into_chunks(texts, file_paths):
chunks = []
for text, file_path in zip(texts, file_paths):
document_chunks = chunk_python_code_with_metadata(text, file_path)
chunks.extend(document_chunks)
return chunks
# Split text into chunks
def split_into_chunks(texts, references, chunk_size, chunk_overlap):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
chunks = []
for text, reference in zip(texts, references):
chunks.extend([
Document(
page_content=chunk,
metadata={
"source": reference,
"usage": "doc"
}
)
for chunk in text_splitter.split_text(text)
])
return chunks
# Setup Vectorstore
def embed_documents_into_vectorstore(chunks, model_name, persist_directory):
print("Start setup_vectorstore_function")
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
vectorstore = get_chroma_vectorstore(embedding_model, persist_directory)
vectorstore.add_documents(chunks)
return vectorstore
# Setup LLM
def setup_llm(model_name, temperature, api_key):
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
return llm
def format_kadi_apy_library_context(docs):
doc_context = []
for doc in docs:
# Extract metadata information
class_info = doc.metadata.get("class", "Unknown Class")
type_info = doc.metadata.get("type", "Unknown Type")
source_info = doc.metadata.get("source", "Unknown Type")
print(":}\n\n", doc.page_content)
formatted_doc = f"# source: {source_info}\n# class: {class_info}\n# type: {type_info}\n{doc.page_content}\n\n\n"
doc_context.append(formatted_doc)
return doc_context
def format_kadi_api_doc_context(docs):
doc_context = []
for doc in docs:
source_info = doc.metadata.get("source", "Unknown Type")
print(":}\n\n", doc.page_content)
formatted_doc = f"# source: {source_info}\n{doc.page_content}\n\n\n"
doc_context.append(formatted_doc)
return doc_context
def rag_workflow(query):
"""
RAGChain class to perform the complete RAG workflow.
"""
# Assume 'llm' and 'vector_store' are already initialized instances
rag_chain = RAGChain(llm, vector_store)
# Step 1: Predict which library usage is relevant
library_usage_prediction = rag_chain.predict_library_usage(query)
print(f"Predicted library usage: {library_usage_prediction}")
# Step 2: Retrieve contexts (documents and code snippets)
doc_contexts, code_contexts = rag_chain.retrieve_contexts(query, library_usage_prediction)
print("Retrieved Document Contexts:", doc_contexts)
print("Retrieved Code Contexts:", code_contexts)
# Step 3: Format the contexts
formatted_doc_context, formatted_code_context = rag_chain.format_context(doc_contexts, code_contexts)
print("Formatted Document Contexts:", formatted_doc_context)
print("Formatted Code Contexts:", formatted_code_context)
# Step 4: Generate the final response
response = rag_chain.generate_response(query, formatted_doc_context, formatted_code_context)
print("Generated Response:", response)
return response
def initialize():
global vector_store, chunks, llm
download_and_upload_kadiAPY_repo_to_huggingfacespace(
api_url=config2["gitlab"]["api_url"],
project_id=config2["gitlab"]["project"]["id"],
version=config2["gitlab"]["project"]["version"]
)
code_texts, code_references = extract_files_and_filepath_from_dir(DATA_DIR, ['kadi_apy'], [])
doc_texts, kadiAPY_doc_references = extract_files_and_filepath_from_dir(DATA_DIR, ['docs/source/'], [])
print("LEEEEEEEEEEEENGTH of code_texts: ", len(code_texts))
print("LEEEEEEEEEEEENGTH of doc_files: ", len(doc_texts))
code_chunks = split_python_code_into_chunks(code_texts, code_references)
doc_chunks = split_into_chunks(doc_texts, kadiAPY_doc_references, CHUNK_SIZE, CHUNK_OVERLAP)
print(f"Total number of code_chunks: {len(code_chunks)}")
print(f"Total number of doc_chunks: {len(doc_chunks)}")
filename = "test"
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}")
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
from langchain_community.document_loaders import TextLoader
initialize()
# Gradio utils
def check_input_text(text):
if not text:
gr.Warning("Please input a question.")
raise TypeError
return True
def add_text(history, text):
history = history + [(text, None)]
yield history, ""
import gradio as gr
def bot_kadi(history):
user_query = history[-1][0]
response = rag_workflow(user_query)
history[-1] = (user_query, response)
yield history
def main():
with gr.Blocks() as demo:
gr.Markdown("## KadiAPY - AI Coding-Assistant")
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
with gr.Tab("KadiAPY - AI Assistant"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
with gr.Row():
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear", variant="stop")
gr.Examples(
examples=[
"Who is working on Kadi4Mat?",
"How do i install the Kadi-Apy library?",
"How do i install the Kadi-Apy library for development?",
"I need a method to upload a file to a record",
],
inputs=user_txt,
outputs=chatbot,
fn=add_text,
label="Try asking...",
cache_examples=False,
examples_per_page=3,
)
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
clear_btn.click(lambda: None, None, chatbot, queue=False)
demo.launch()
if __name__ == "__main__":
main()