|
import os |
|
import json |
|
import gradio as gr |
|
|
|
from huggingface_hub import HfApi, login |
|
from dotenv import load_dotenv |
|
|
|
from download_repo import download_gitlab_repo_to_hfspace |
|
from process_repo import extract_repo_files |
|
from chunking import chunk_pythoncode_and_add_metadata, chunk_text_and_add_metadata |
|
from vectorstore import setup_vectorstore |
|
from llm import get_groq_llm |
|
from kadi_apy_bot import KadiAPYBot |
|
from repo_versions import store_message_from_json |
|
from test import manage_hf_files |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
|
|
with open("config.json", "r") as file: |
|
config = json.load(file) |
|
|
|
GROQ_API_KEY = os.environ["GROQ_API_KEY"] |
|
HF_TOKEN = os.environ["HF_Token"] |
|
|
|
|
|
VECTORSTORE_DIRECTORY = config["vectorstore_directory"] |
|
CHUNK_SIZE = config["chunking"]["chunk_size"] |
|
CHUNK_OVERLAP = config["chunking"]["chunk_overlap"] |
|
|
|
EMBEDDING_MODEL_NAME = config["embedding_model"]["name"] |
|
EMBEDDING_MODEL_VERSION = config["embedding_model"]["version"] |
|
|
|
LLM_MODEL_NAME = config["llm_model"]["name"] |
|
LLM_MODEL_TEMPERATURE = config["llm_model"]["temperature"] |
|
|
|
GITLAB_API_URL = config["gitlab"]["api_url"] |
|
GITLAB_PROJECT_ID = config["gitlab"]["project id"] |
|
GITLAB_PROJECT_VERSION = config["gitlab"]["project version"] |
|
|
|
DATA_DIR = config["data_dir"] |
|
HF_SPACE_NAME = config["hf_space_name"] |
|
|
|
login(HF_TOKEN) |
|
hf_api = HfApi() |
|
|
|
|
|
def initialize(): |
|
global kadiAPY_bot |
|
|
|
|
|
|
|
download_gitlab_repo_to_hfspace(GITLAB_API_URL, GITLAB_PROJECT_ID, GITLAB_PROJECT_VERSION, DATA_DIR, hf_api, HF_SPACE_NAME) |
|
|
|
code_texts, code_references = extract_repo_files(DATA_DIR, ['kadi_apy'], []) |
|
doc_texts, doc_references = extract_repo_files(DATA_DIR, ['docs'], []) |
|
|
|
print("Length of code_texts: ", len(code_texts)) |
|
print("Length of doc_files: ", len(doc_texts)) |
|
|
|
code_chunks = chunk_pythoncode_and_add_metadata(code_texts, code_references) |
|
doc_chunks = chunk_text_and_add_metadata(doc_texts, doc_references, CHUNK_SIZE, CHUNK_OVERLAP) |
|
|
|
print(f"Total number of code_chunks: {len(code_chunks)}") |
|
print(f"Total number of doc_chunks: {len(doc_chunks)}") |
|
|
|
vectorstore = setup_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, VECTORSTORE_DIRECTORY) |
|
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) |
|
|
|
kadiAPY_bot = KadiAPYBot(llm, vectorstore) |
|
|
|
|
|
|
|
|
|
|
|
initialize() |
|
|
|
|
|
working_directory = os.getcwd() |
|
|
|
|
|
print("Listing all files starting from the current working directory:") |
|
for root, dirs, files in os.walk(working_directory): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
print(file_path) |
|
|
|
|
|
|
|
|
|
|
|
def bot_kadi(history): |
|
user_query = history[-1][0] |
|
response = kadiAPY_bot.process_query(user_query) |
|
history[-1] = (user_query, response) |
|
|
|
yield history |
|
|
|
|
|
|
|
|
|
def check_input_text(text): |
|
if not text: |
|
gr.Warning("Please input a question.") |
|
raise TypeError |
|
return True |
|
|
|
def add_text(history, text): |
|
history = history + [(text, None)] |
|
yield history, "" |
|
|
|
|
|
import gradio as gr |
|
|
|
def main(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("## KadiAPY - AI Coding-Assistant") |
|
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") |
|
|
|
with gr.Tab("KadiAPY - AI Assistant"): |
|
with gr.Row(): |
|
with gr.Column(scale=10): |
|
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) |
|
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
submit_btn = gr.Button("Submit", variant="primary") |
|
with gr.Column(scale=1): |
|
clear_btn = gr.Button("Clear", variant="stop") |
|
|
|
gr.Examples( |
|
examples=[ |
|
"Who is working on Kadi4Mat?", |
|
"How do i install the Kadi-Apy library?", |
|
"How do i install the Kadi-Apy library for development?", |
|
"I need a method to upload a file to a record", |
|
], |
|
inputs=user_txt, |
|
outputs=chatbot, |
|
fn=add_text, |
|
label="Try asking...", |
|
cache_examples=False, |
|
examples_per_page=3, |
|
) |
|
|
|
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot]) |
|
clear_btn.click(lambda: None, None, chatbot, queue=False) |
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |