KadiAPY_Coding_Assistant / chunk_python_code.py
bupa1018's picture
Update chunk_python_code.py
c5b5a5b
raw
history blame
7.56 kB
import ast
from langchain.schema import Document
def chunk_python_code_with_metadata(python_code, file_path):
"""
Custom Python Code Splitter
chunks python file by length of func/method body
aims to have one full method/function in a chunk and full body of a class, but cutting of when first method declaration is met
able to handles decorators on methods
Entry point method to process the Python file.
It invokes the iterate_ast function.
"""
documents = []
#print(f"Processing file: {file_path}")
_iterate_ast(python_code, documents, file_path)
# Determine usage based on the file_path
if file_path.startswith("kadi_apy/lib/"):
usage = "kadi-apy python library"
elif file_path.startswith("kadi_apy/cli/"):
usage = "kadi-apy python cli library"
else:
usage = "undefined"
# Add metadata-type "usage" to all documents
for doc in documents:
doc.metadata["source"] = file_path
doc.metadata["usage"] = usage # Add the determined usage metadata
#print(doc)
return documents
def _iterate_ast(python_code, documents, file_path):
"""
Parses the AST of the given Python file and delegates
handling to specific methods based on node types.
"""
tree = ast.parse(python_code, filename=file_path)
first_level_nodes = list(ast.iter_child_nodes(tree))
# Check if there are no first-level nodes
if not first_level_nodes:
documents.extend(
_chunk_nodeless_python_code(python_code, file_path))
return
all_imports = all(isinstance(node, (ast.Import, ast.ImportFrom)) for node in first_level_nodes)
if all_imports:
documents.extend(
_chunk_import_only_python_code(python_code, file_path))
# Iterate over first-level nodes
for first_level_node in ast.iter_child_nodes(tree):
if isinstance(first_level_node, ast.ClassDef):
documents.extend(
_handle_first_level_class(first_level_node, python_code))
elif isinstance(first_level_node, ast.FunctionDef):
documents.extend(
_chunk_first_level_func_node(first_level_node, python_code))
elif isinstance(first_level_node, ast.Assign):
documents.extend(
_chunk_first_level_assign_node(first_level_node, python_code))
# else:
# documents.extend(
# _handle_not_defined_case(python_code))
def _handle_first_level_class(ast_node , python_code):
"""
Handles classes at the first level of the AST.
"""
documents = []
class_start_line = ast_node.lineno
class_body_lines = [child.lineno for child in ast_node.body if isinstance(child, ast.FunctionDef)]
class_end_line = min(class_body_lines, default=ast_node.end_lineno) - 1
class_source = '\n'.join(python_code.splitlines()[class_start_line-1:class_end_line])
metadata = {
"type": "class",
"class": ast_node.name,
"visibility": "public"
}
# Create and store Document for the class
doc = Document(
page_content=class_source,
metadata=metadata
)
documents.append(doc)
# Handle methods within the class
for second_level_node in ast.iter_child_nodes(ast_node):
if isinstance(second_level_node, ast.FunctionDef):
method_start_line = (
second_level_node.decorator_list[0].lineno
if second_level_node.decorator_list else second_level_node.lineno
)
method_end_line = second_level_node.end_lineno
method_source = '\n'.join(python_code.splitlines()[method_start_line-1:method_end_line])
visibility = "internal" if second_level_node.name.startswith("_") else "public"
doc = Document(
page_content=method_source,
metadata={
"type": "method",
"method": second_level_node.name,
"visibility": visibility,
"class": ast_node.name
}
)
documents.append(doc)
return documents
def _handle_not_defined_case(python_code):
documents = []
documents.extend(
_chunk_python_code_by_character(python_code))
return documents
def _chunk_first_level_func_node(ast_node, python_code):
"""
Handles functions at the first level of the AST.
"""
documents = []
function_start_line = (
ast_node.decorator_list[0].lineno
if ast_node.decorator_list else ast_node.lineno
)
function_end_line = ast_node.end_lineno
function_source = '\n'.join(python_code.splitlines()[function_start_line-1:function_end_line])
visibility = "internal" if ast_node.name.startswith("_") else "public"
is_command = any(
decorator.id == "apy_command"
for decorator in ast_node.decorator_list
if hasattr(decorator, "id")
)
metadata = {
"type": "command" if is_command else "function",
"visibility": visibility
}
if is_command:
metadata["command"] = ast_node.name
else:
metadata["method"] = ast_node.name
doc = Document(
page_content=function_source,
metadata=metadata
)
documents.append(doc)
return documents
def _chunk_first_level_assign_node(ast_node, python_code):
"""
Handles assignment statements at the first level of the AST.
"""
documents = []
assign_start_line = ast_node.lineno
assign_end_line = ast_node.end_lineno
assign_source = '\n'.join(python_code.splitlines()[assign_start_line-1:assign_end_line])
# Create metadata without imports
metadata = {"type": "Assign"}
# Create and store Document for the assignment
doc = Document(
page_content=assign_source,
metadata=metadata
)
documents.append(doc)
return documents
def _chunk_import_only_python_code(python_code, file_path):
"""
Handles cases where the first-level nodes are only imports.
"""
documents = []
if file_path.endswith("__init__.py"):
type = "__init__-file"
else:
type = "undefined"
# Create metadata without imports
metadata = {"type": type}
# Create and store a Document with the full source code
doc = Document(
page_content=python_code,
metadata=metadata
)
documents.append(doc)
return documents
def _chunk_nodeless_python_code(python_code, file_path):
"""
Handles cases where no top-level nodes are found in the AST.
"""
documents = []
if file_path.endswith("__init__.py"):
type = "__init__-file"
else:
type = "undefined"
# Create metadata without imports
metadata = {"type": type}
# Create and store a Document with the full source code
doc = Document(
page_content=python_code,
metadata=metadata
)
documents.append(doc)
return documents
from langchain.text_splitter import RecursiveCharacterTextSplitter
def _chunk_python_code_by_character(python_code):
documents = []
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=128,
separators=[]
)
chunks = text_splitter.split_text(python_code)
for chunk in chunks:
doc = Document(
page_content=chunk
)
documents.append(doc)
return documents