Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -115,12 +115,13 @@ def rag_workflow(query):
|
|
115 |
print("Retrieved Document Contexts:", kadiAPY_doc_documents)
|
116 |
print("Retrieved Code Contexts:", kadiAPY_code_documents)
|
117 |
|
|
|
|
|
118 |
|
119 |
formatted_doc_snippets = rag_chain.format_documents(kadiAPY_doc_documents)
|
120 |
formatted_code_snippets = rag_chain.format_documents(kadiAPY_code_documents)
|
121 |
-
print("FORMATTED Retrieved Document Contexts:", formatted_doc_snippets)
|
122 |
-
print("FORMATTED Retrieved Code Contexts:" , formatted_code_snippets)
|
123 |
-
print(formatted_code_snippets)
|
124 |
# Step 4: Generate the final response
|
125 |
response = rag_chain.generate_response(query, formatted_doc_snippets, formatted_code_snippets)
|
126 |
print("Generated Response:", response)
|
@@ -150,7 +151,6 @@ def initialize():
|
|
150 |
print(f"Total number of code_chunks: {len(code_chunks)}")
|
151 |
print(f"Total number of doc_chunks: {len(doc_chunks)}")
|
152 |
|
153 |
-
filename = "test"
|
154 |
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}")
|
155 |
llm = get_groq_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
|
156 |
|
|
|
115 |
print("Retrieved Document Contexts:", kadiAPY_doc_documents)
|
116 |
print("Retrieved Code Contexts:", kadiAPY_code_documents)
|
117 |
|
118 |
+
|
119 |
+
|
120 |
|
121 |
formatted_doc_snippets = rag_chain.format_documents(kadiAPY_doc_documents)
|
122 |
formatted_code_snippets = rag_chain.format_documents(kadiAPY_code_documents)
|
123 |
+
#print("FORMATTED Retrieved Document Contexts:", formatted_doc_snippets)
|
124 |
+
#print("FORMATTED Retrieved Code Contexts:" , formatted_code_snippets)
|
|
|
125 |
# Step 4: Generate the final response
|
126 |
response = rag_chain.generate_response(query, formatted_doc_snippets, formatted_code_snippets)
|
127 |
print("Generated Response:", response)
|
|
|
151 |
print(f"Total number of code_chunks: {len(code_chunks)}")
|
152 |
print(f"Total number of doc_chunks: {len(doc_chunks)}")
|
153 |
|
|
|
154 |
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}")
|
155 |
llm = get_groq_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
|
156 |
|