bupa1018 commited on
Commit
0ceb7c8
·
verified ·
1 Parent(s): a1cc250

Update kadiApy_ragchain.py

Browse files
Files changed (1) hide show
  1. kadiApy_ragchain.py +32 -2
kadiApy_ragchain.py CHANGED
@@ -134,7 +134,7 @@ class KadiApyRagchain:
134
  context = self.vector_store.similarity_search(query = query, k=k, filter=filter)
135
  return context
136
 
137
- def generate_response(self, query, chat_history, doc_context, code_context):
138
  """
139
  Generate a response using the retrieved contexts and the LLM.
140
  """
@@ -170,7 +170,37 @@ class KadiApyRagchain:
170
  """
171
  return self.llm.invoke(prompt).content
172
 
173
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
  def format_documents(self, documents):
176
  formatted_docs = []
 
134
  context = self.vector_store.similarity_search(query = query, k=k, filter=filter)
135
  return context
136
 
137
+ def generate_response2(self, query, chat_history, doc_context, code_context):
138
  """
139
  Generate a response using the retrieved contexts and the LLM.
140
  """
 
170
  """
171
  return self.llm.invoke(prompt).content
172
 
173
+ def generate_response(self, query, chat_history, doc_context, code_context):
174
+ """
175
+ Generate a response using the retrieved contexts and the LLM.
176
+ """
177
+
178
+ # Update the prompt with history included
179
+ prompt = f"""
180
+ You are a Python programming assistant specialized in the "Kadi-APY" library.
181
+ The "Kadi-APY" library is a Python package designed to facilitate interaction with the REST-like API of a software platform called Kadi4Mat.
182
+ Your task is to answer the user's query based on the guidelines, and if needed, combine understanding provided by
183
+ "Document Snippets" with the implementation details provided by "Code Snippets."
184
+
185
+ Guidelines if generating code:
186
+ - Display the complete code first, followed by a concise explanation in no more than 5 sentences.
187
+
188
+ General Guidelines:
189
+ - Refer to the chat history if it provides context that could enhance your understanding of the user's query.
190
+ - Always include the chat history if relevant to the user's query for continuity and clarity in responses.
191
+ - If the user's query cannot be fulfilled based on the provided snippets, reply with "The API does not support the requested functionality."
192
+ - If the user's query does not implicate any task, reply with a question asking the user to elaborate.
193
+
194
+ Document Snippets:
195
+ {doc_context}
196
+
197
+ Code Snippets:
198
+ {code_context}
199
+
200
+ Query:
201
+ {query}
202
+ """
203
+ return self.llm.invoke(prompt).content
204
 
205
  def format_documents(self, documents):
206
  formatted_docs = []