Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ import io
|
|
10 |
from huggingface_hub import HfApi, login
|
11 |
from PyPDF2 import PdfReader
|
12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
13 |
-
from langchain_community.vectorstores import Chroma
|
14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
from langchain_groq import ChatGroq
|
16 |
from dotenv import load_dotenv
|
@@ -246,7 +245,7 @@ def embed_documents_into_vectorstore(chunks, model_name, persist_directory):
|
|
246 |
print("Start setup_vectorstore_function")
|
247 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
248 |
vectorstore = get_chroma_vectorstore(embedding_model, persist_directory)
|
249 |
-
|
250 |
return vectorstore
|
251 |
|
252 |
# Setup LLM
|
@@ -334,8 +333,8 @@ def rag_workflow(query):
|
|
334 |
|
335 |
|
336 |
|
337 |
-
kadi_apy_docs = retrieve_within_kadiApy_docs (
|
338 |
-
kadi_apy_library_docs = retrieve_within_kadiApy_library (
|
339 |
|
340 |
doc_context = format_kadi_api_doc_context(kadi_apy_docs)
|
341 |
code_context = format_kadi_apy_library_context(kadi_apy_library_docs)
|
@@ -391,7 +390,7 @@ def rag_workflow(query):
|
|
391 |
|
392 |
|
393 |
def initialize():
|
394 |
-
global
|
395 |
|
396 |
download_gitlab_project_by_version()
|
397 |
#download_gitlab_repo()
|
@@ -417,11 +416,11 @@ def initialize():
|
|
417 |
#docstore = embed_documents_into_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY)
|
418 |
#codestore = embed_documents_into_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
|
419 |
|
420 |
-
embed_documents_into_vectorstore(
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
|
426 |
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
|
427 |
|
|
|
10 |
from huggingface_hub import HfApi, login
|
11 |
from PyPDF2 import PdfReader
|
12 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
from langchain_groq import ChatGroq
|
15 |
from dotenv import load_dotenv
|
|
|
245 |
print("Start setup_vectorstore_function")
|
246 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
247 |
vectorstore = get_chroma_vectorstore(embedding_model, persist_directory)
|
248 |
+
vector_store.add_documents(chunks)
|
249 |
return vectorstore
|
250 |
|
251 |
# Setup LLM
|
|
|
333 |
|
334 |
|
335 |
|
336 |
+
kadi_apy_docs = retrieve_within_kadiApy_docs (vectorstore, query, k = 5)
|
337 |
+
kadi_apy_library_docs = retrieve_within_kadiApy_library (vectorstore, query, k = 10)
|
338 |
|
339 |
doc_context = format_kadi_api_doc_context(kadi_apy_docs)
|
340 |
code_context = format_kadi_apy_library_context(kadi_apy_library_docs)
|
|
|
390 |
|
391 |
|
392 |
def initialize():
|
393 |
+
global vectore_store, chunks, llm
|
394 |
|
395 |
download_gitlab_project_by_version()
|
396 |
#download_gitlab_repo()
|
|
|
416 |
#docstore = embed_documents_into_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY)
|
417 |
#codestore = embed_documents_into_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
|
418 |
|
419 |
+
vectorstore = embed_documents_into_vectorstore(
|
420 |
+
chunks=kadiAPY_code_chunks + kadiAPY_doc_chunks,
|
421 |
+
model_name= EMBEDDING_MODEL_NAME,
|
422 |
+
persist_directory= PERSIST_DOC_DIRECTORY
|
423 |
+
)
|
424 |
|
425 |
llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
|
426 |
|