bupa1018 commited on
Commit
87467f4
·
1 Parent(s): f9083b7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -10,7 +10,6 @@ import io
10
  from huggingface_hub import HfApi, login
11
  from PyPDF2 import PdfReader
12
  from langchain_huggingface import HuggingFaceEmbeddings
13
- from langchain_community.vectorstores import Chroma
14
  from langchain.text_splitter import RecursiveCharacterTextSplitter
15
  from langchain_groq import ChatGroq
16
  from dotenv import load_dotenv
@@ -246,7 +245,7 @@ def embed_documents_into_vectorstore(chunks, model_name, persist_directory):
246
  print("Start setup_vectorstore_function")
247
  embedding_model = HuggingFaceEmbeddings(model_name=model_name)
248
  vectorstore = get_chroma_vectorstore(embedding_model, persist_directory)
249
- vectorstore.add_documents(chunks)
250
  return vectorstore
251
 
252
  # Setup LLM
@@ -334,8 +333,8 @@ def rag_workflow(query):
334
 
335
 
336
 
337
- kadi_apy_docs = retrieve_within_kadiApy_docs (docstore, query, k = 5)
338
- kadi_apy_library_docs = retrieve_within_kadiApy_library (docstore, query, k = 10)
339
 
340
  doc_context = format_kadi_api_doc_context(kadi_apy_docs)
341
  code_context = format_kadi_apy_library_context(kadi_apy_library_docs)
@@ -391,7 +390,7 @@ def rag_workflow(query):
391
 
392
 
393
  def initialize():
394
- global docstore, codestore, chunks, llm
395
 
396
  download_gitlab_project_by_version()
397
  #download_gitlab_repo()
@@ -417,11 +416,11 @@ def initialize():
417
  #docstore = embed_documents_into_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY)
418
  #codestore = embed_documents_into_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
419
 
420
- embed_documents_into_vectorstore(
421
- chunks=kadiAPY_code_chunks + kadiAPY_doc_chunks,
422
- model_name= EMBEDDING_MODEL_NAME, # Correcting the variable name
423
- persist_directory= PERSIST_DOC_DIRECTORY # Correcting the variable name
424
- )
425
 
426
  llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
427
 
 
10
  from huggingface_hub import HfApi, login
11
  from PyPDF2 import PdfReader
12
  from langchain_huggingface import HuggingFaceEmbeddings
 
13
  from langchain.text_splitter import RecursiveCharacterTextSplitter
14
  from langchain_groq import ChatGroq
15
  from dotenv import load_dotenv
 
245
  print("Start setup_vectorstore_function")
246
  embedding_model = HuggingFaceEmbeddings(model_name=model_name)
247
  vectorstore = get_chroma_vectorstore(embedding_model, persist_directory)
248
+ vector_store.add_documents(chunks)
249
  return vectorstore
250
 
251
  # Setup LLM
 
333
 
334
 
335
 
336
+ kadi_apy_docs = retrieve_within_kadiApy_docs (vectorstore, query, k = 5)
337
+ kadi_apy_library_docs = retrieve_within_kadiApy_library (vectorstore, query, k = 10)
338
 
339
  doc_context = format_kadi_api_doc_context(kadi_apy_docs)
340
  code_context = format_kadi_apy_library_context(kadi_apy_library_docs)
 
390
 
391
 
392
  def initialize():
393
+ global vectore_store, chunks, llm
394
 
395
  download_gitlab_project_by_version()
396
  #download_gitlab_repo()
 
416
  #docstore = embed_documents_into_vectorstore(kadiAPY_code_chunks, EMBEDDING_MODEL_NAME, PERSIST_DOC_DIRECTORY)
417
  #codestore = embed_documents_into_vectorstore(kadiAPY_doc_chunks, EMBEDDING_MODEL_NAME, PERSIST_CODE_DIRECTORY)
418
 
419
+ vectorstore = embed_documents_into_vectorstore(
420
+ chunks=kadiAPY_code_chunks + kadiAPY_doc_chunks,
421
+ model_name= EMBEDDING_MODEL_NAME,
422
+ persist_directory= PERSIST_DOC_DIRECTORY
423
+ )
424
 
425
  llm = setup_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
426