Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -84,12 +84,6 @@ def embed_documents_into_vectorstore(chunks, model_name, persist_directory):
|
|
84 |
vectorstore.add_documents(chunks)
|
85 |
return vectorstore
|
86 |
|
87 |
-
# Setup LLM
|
88 |
-
def setup_llm(model_name, temperature, api_key):
|
89 |
-
llm = ChatGroq(model=model_name, temperature=temperature, api_key=api_key)
|
90 |
-
return llm
|
91 |
-
|
92 |
-
|
93 |
def rag_workflow(query):
|
94 |
"""
|
95 |
RAGChain class to perform the complete RAG workflow.
|
@@ -145,7 +139,7 @@ def initialize():
|
|
145 |
|
146 |
filename = "test"
|
147 |
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}")
|
148 |
-
llm =
|
149 |
|
150 |
from langchain_community.document_loaders import TextLoader
|
151 |
|
|
|
84 |
vectorstore.add_documents(chunks)
|
85 |
return vectorstore
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
def rag_workflow(query):
|
88 |
"""
|
89 |
RAGChain class to perform the complete RAG workflow.
|
|
|
139 |
|
140 |
filename = "test"
|
141 |
vector_store = embed_documents_into_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, f"{DATA_DIR}/{filename}")
|
142 |
+
llm = get_groq_llm(LLM_MODEL_NAME, LLM_TEMPERATURE, GROQ_API_KEY)
|
143 |
|
144 |
from langchain_community.document_loaders import TextLoader
|
145 |
|