Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import os
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
|
5 |
-
from langchain_community.vectorstores import Chroma
|
6 |
from huggingface_hub import HfApi, login
|
7 |
from PyPDF2 import PdfReader
|
8 |
from langchain_huggingface import HuggingFaceEmbeddings
|
@@ -145,19 +144,6 @@ def rag_workflow(query):
|
|
145 |
return response
|
146 |
|
147 |
|
148 |
-
|
149 |
-
def get_chroma_vectorstore2(embedding_model):
|
150 |
-
# Define the persist_directory path
|
151 |
-
vectorstore_path = "/home/user/data"
|
152 |
-
|
153 |
-
# Ensure the directory exists
|
154 |
-
os.makedirs(vectorstore_path, exist_ok=True) # Creates it if it doesn't exist
|
155 |
-
print(f"Using persist_directory: {vectorstore_path}")
|
156 |
-
|
157 |
-
# Initialize the Chroma vectorstore with the specified persist_directory
|
158 |
-
vectorstore = Chroma(persist_directory=vectorstore_path, embedding_function=embedding_model)
|
159 |
-
return vectorstore
|
160 |
-
|
161 |
def initialize():
|
162 |
global vector_store, chunks, llm
|
163 |
|
|
|
2 |
import json
|
3 |
import gradio as gr
|
4 |
|
|
|
5 |
from huggingface_hub import HfApi, login
|
6 |
from PyPDF2 import PdfReader
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
144 |
return response
|
145 |
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
def initialize():
|
148 |
global vector_store, chunks, llm
|
149 |
|