Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,6 @@ from kadiApy_ragchain import KadiApyRagchain
|
|
13 |
load_dotenv()
|
14 |
|
15 |
vectorstore_path = "data/vectorstore"
|
16 |
-
|
17 |
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
|
18 |
HF_TOKEN = os.environ["HF_Token"]
|
19 |
|
@@ -21,41 +20,47 @@ with open("config.json", "r") as file:
|
|
21 |
config = json.load(file)
|
22 |
|
23 |
login(HF_TOKEN)
|
24 |
-
hf_api = HfApi()
|
25 |
|
|
|
26 |
LLM_MODEL_NAME = config["llm_model_name"]
|
27 |
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])
|
28 |
|
29 |
-
def initialize():
|
30 |
-
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
|
31 |
-
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
|
32 |
-
return KadiApyRagchain(llm, vectorstore)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
-
#gradio utils
|
42 |
def add_text_to_chat_history(chat_history, user_input):
|
43 |
chat_history = chat_history + [(user_input, None)]
|
44 |
return chat_history, ""
|
45 |
|
|
|
46 |
def show_history(chat_history):
|
47 |
return chat_history
|
48 |
|
|
|
49 |
def reset_all():
|
50 |
return [], "", ""
|
51 |
|
|
|
52 |
def main():
|
53 |
-
|
|
|
54 |
|
55 |
with gr.Blocks() as demo:
|
56 |
gr.Markdown("## KadiAPY - AI Coding-Assistant")
|
57 |
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
|
58 |
|
|
|
59 |
chat_history = gr.State([])
|
60 |
|
61 |
with gr.Tab("KadiAPY - AI Assistant"):
|
@@ -63,13 +68,13 @@ def main():
|
|
63 |
with gr.Column(scale=10):
|
64 |
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
|
65 |
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
|
66 |
-
|
67 |
with gr.Row():
|
68 |
with gr.Column(scale=1):
|
69 |
submit_btn = gr.Button("Submit", variant="primary")
|
70 |
with gr.Column(scale=1):
|
71 |
clear_btn = gr.Button("Clear", variant="stop")
|
72 |
-
|
73 |
gr.Examples(
|
74 |
examples=[
|
75 |
"Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
|
@@ -83,22 +88,19 @@ def main():
|
|
83 |
examples_per_page=3,
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
.then(
|
89 |
-
|
90 |
-
|
91 |
-
.then(show_history, [chat_history], [chatbot])\
|
92 |
-
.then(bot_kadi, [chat_history, kadiAPY_ragchain], [chatbot])
|
93 |
-
|
94 |
clear_btn.click(
|
95 |
reset_all,
|
96 |
None,
|
97 |
[chat_history, chatbot, user_txt],
|
98 |
queue=False
|
99 |
)
|
100 |
-
|
101 |
demo.launch()
|
102 |
|
|
|
103 |
if __name__ == "__main__":
|
104 |
main()
|
|
|
13 |
load_dotenv()
|
14 |
|
15 |
vectorstore_path = "data/vectorstore"
|
|
|
16 |
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
|
17 |
HF_TOKEN = os.environ["HF_Token"]
|
18 |
|
|
|
20 |
config = json.load(file)
|
21 |
|
22 |
login(HF_TOKEN)
|
|
|
23 |
|
24 |
+
# Access the values
|
25 |
LLM_MODEL_NAME = config["llm_model_name"]
|
26 |
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])
|
27 |
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# A class to encapsulate the bot logic
|
30 |
+
class KadiBot:
|
31 |
+
def __init__(self, hf_token: str, groq_api_key: str, config: dict, vectorstore_path: str):
|
32 |
+
self.vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
|
33 |
+
self.llm = get_groq_llm(config["llm_model_name"], float(config["llm_model_temperature"]), groq_api_key)
|
34 |
+
self.kadiAPY_ragchain = KadiApyRagchain(self.llm, self.vectorstore)
|
35 |
+
|
36 |
+
def process_query(self, user_query, chat_history):
|
37 |
+
response = self.kadiAPY_ragchain.process_query(user_query, chat_history)
|
38 |
+
chat_history[-1] = (user_query, response)
|
39 |
+
return chat_history
|
40 |
|
41 |
|
|
|
42 |
def add_text_to_chat_history(chat_history, user_input):
|
43 |
chat_history = chat_history + [(user_input, None)]
|
44 |
return chat_history, ""
|
45 |
|
46 |
+
|
47 |
def show_history(chat_history):
|
48 |
return chat_history
|
49 |
|
50 |
+
|
51 |
def reset_all():
|
52 |
return [], "", ""
|
53 |
|
54 |
+
|
55 |
def main():
|
56 |
+
# Initialize the KadiBot
|
57 |
+
kadi_bot = KadiBot(HF_TOKEN, GROQ_API_KEY, config, vectorstore_path)
|
58 |
|
59 |
with gr.Blocks() as demo:
|
60 |
gr.Markdown("## KadiAPY - AI Coding-Assistant")
|
61 |
gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM")
|
62 |
|
63 |
+
# Create a state for session management
|
64 |
chat_history = gr.State([])
|
65 |
|
66 |
with gr.Tab("KadiAPY - AI Assistant"):
|
|
|
68 |
with gr.Column(scale=10):
|
69 |
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
|
70 |
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
|
71 |
+
|
72 |
with gr.Row():
|
73 |
with gr.Column(scale=1):
|
74 |
submit_btn = gr.Button("Submit", variant="primary")
|
75 |
with gr.Column(scale=1):
|
76 |
clear_btn = gr.Button("Clear", variant="stop")
|
77 |
+
|
78 |
gr.Examples(
|
79 |
examples=[
|
80 |
"Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure",
|
|
|
88 |
examples_per_page=3,
|
89 |
)
|
90 |
|
91 |
+
# Use the state to persist chat history between interactions
|
92 |
+
user_txt.submit(add_text_to_chat_history, [chat_history, user_txt], [chat_history, user_txt]).then(show_history, [chat_history], [chatbot])\
|
93 |
+
.then(kadi_bot.process_query, [chat_history], [chatbot])
|
94 |
+
submit_btn.click(add_text_to_chat_history, [chat_history, user_txt], [chat_history, user_txt]).then(show_history, [chat_history], [chatbot])\
|
95 |
+
.then(kadi_bot.process_query, [chat_history], [chatbot])
|
|
|
|
|
|
|
96 |
clear_btn.click(
|
97 |
reset_all,
|
98 |
None,
|
99 |
[chat_history, chatbot, user_txt],
|
100 |
queue=False
|
101 |
)
|
|
|
102 |
demo.launch()
|
103 |
|
104 |
+
|
105 |
if __name__ == "__main__":
|
106 |
main()
|