Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,76 +5,100 @@ import streamlit as st
|
|
5 |
from huggingface_hub import HfApi, login
|
6 |
from dotenv import load_dotenv
|
7 |
|
|
|
|
|
|
|
|
|
8 |
from llm import get_groq_llm
|
9 |
from vectorstore import get_chroma_vectorstore
|
10 |
from embeddings import get_SFR_Code_embedding_model
|
11 |
from kadi_apy_bot import KadiAPYBot
|
|
|
12 |
|
13 |
# Load environment variables from .env file
|
14 |
load_dotenv()
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
|
18 |
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
|
19 |
HF_TOKEN = os.environ["HF_Token"]
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
login(HF_TOKEN)
|
25 |
hf_api = HfApi()
|
26 |
|
27 |
-
# Access the values
|
28 |
-
LLM_MODEL_NAME = config["llm_model_name"]
|
29 |
-
LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])
|
30 |
|
31 |
def initialize():
|
32 |
global kadiAPY_bot
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
|
36 |
|
37 |
kadiAPY_bot = KadiAPYBot(llm, vectorstore)
|
38 |
|
39 |
initialize()
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
user_query = history[-1][0]
|
46 |
-
|
47 |
-
# Add user query to the bot's state for session-specific history
|
48 |
-
state["history"].append({"query": user_query, "response": None})
|
49 |
-
|
50 |
-
# Process the query with the bot and generate a response
|
51 |
response = kadiAPY_bot.process_query(user_query)
|
52 |
-
|
53 |
-
# Save the response back to session state
|
54 |
-
state["history"][-1]["response"] = response
|
55 |
-
|
56 |
history[-1] = (user_query, response)
|
57 |
-
yield history
|
58 |
-
|
59 |
-
# Gradio UI
|
60 |
-
def add_text(history, text, state):
|
61 |
-
"""
|
62 |
-
Add user text to history and initialize state if needed.
|
63 |
-
"""
|
64 |
-
if "history" not in state:
|
65 |
-
state["history"] = [] # Initialize session-specific state
|
66 |
-
if history is None or len(history) == 0:
|
67 |
-
history = [] # Initialize empty history list
|
68 |
|
69 |
-
|
70 |
-
|
71 |
|
|
|
|
|
72 |
def check_input_text(text):
|
73 |
if not text:
|
74 |
gr.Warning("Please input a question.")
|
75 |
raise TypeError
|
76 |
return True
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def main():
|
79 |
with gr.Blocks() as demo:
|
80 |
gr.Markdown("## KadiAPY - AI Coding-Assistant")
|
@@ -85,9 +109,6 @@ def main():
|
|
85 |
with gr.Column(scale=10):
|
86 |
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
|
87 |
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
|
88 |
-
|
89 |
-
# Create session-specific state with gr.State
|
90 |
-
session_state = gr.State()
|
91 |
|
92 |
with gr.Row():
|
93 |
with gr.Column(scale=1):
|
@@ -108,14 +129,12 @@ def main():
|
|
108 |
examples_per_page=3,
|
109 |
)
|
110 |
|
111 |
-
user_txt.submit(check_input_text, user_txt, None)
|
112 |
-
.success(add_text, [chatbot, user_txt,
|
113 |
-
.then(bot_kadi, [chatbot, session_state], [chatbot])
|
114 |
-
submit_btn.click(check_input_text, user_txt, None)
|
115 |
-
.success(add_text, [chatbot, user_txt, session_state], [chatbot, user_txt])
|
116 |
-
.then(bot_kadi, [chatbot, session_state], [chatbot])
|
117 |
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
118 |
-
demo.launch()
|
119 |
|
|
|
|
|
|
|
120 |
if __name__ == "__main__":
|
121 |
main()
|
|
|
5 |
from huggingface_hub import HfApi, login
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
+
from download_repo import download_gitlab_repo_to_hfspace
|
9 |
+
from process_repo import extract_repo_files
|
10 |
+
from chunking import chunk_pythoncode_and_add_metadata, chunk_text_and_add_metadata
|
11 |
+
from vectorstore import setup_vectorstore
|
12 |
from llm import get_groq_llm
|
13 |
from vectorstore import get_chroma_vectorstore
|
14 |
from embeddings import get_SFR_Code_embedding_model
|
15 |
from kadi_apy_bot import KadiAPYBot
|
16 |
+
from repo_versions import store_message_from_json
|
17 |
|
18 |
# Load environment variables from .env file
|
19 |
load_dotenv()
|
20 |
|
21 |
+
# Load configuration from JSON file
|
22 |
+
|
23 |
+
with open("config.json", "r") as file:
|
24 |
+
config = json.load(file)
|
25 |
|
26 |
GROQ_API_KEY = os.environ["GROQ_API_KEY"]
|
27 |
HF_TOKEN = os.environ["HF_Token"]
|
28 |
|
29 |
+
|
30 |
+
VECTORSTORE_DIRECTORY = config["vectorstore_directory"]
|
31 |
+
CHUNK_SIZE = config["chunking"]["chunk_size"]
|
32 |
+
CHUNK_OVERLAP = config["chunking"]["chunk_overlap"]
|
33 |
+
|
34 |
+
EMBEDDING_MODEL_NAME = config["embedding_model"]["name"]
|
35 |
+
EMBEDDING_MODEL_VERSION = config["embedding_model"]["version"]
|
36 |
+
|
37 |
+
LLM_MODEL_NAME = config["llm_model"]["name"]
|
38 |
+
LLM_MODEL_TEMPERATURE = config["llm_model"]["temperature"]
|
39 |
+
|
40 |
+
GITLAB_API_URL = config["gitlab"]["api_url"]
|
41 |
+
GITLAB_PROJECT_ID = config["gitlab"]["project id"]
|
42 |
+
GITLAB_PROJECT_VERSION = config["gitlab"]["project version"]
|
43 |
+
|
44 |
+
DATA_DIR = config["data_dir"]
|
45 |
+
HF_SPACE_NAME = config["hf_space_name"]
|
46 |
|
47 |
login(HF_TOKEN)
|
48 |
hf_api = HfApi()
|
49 |
|
|
|
|
|
|
|
50 |
|
51 |
def initialize():
|
52 |
global kadiAPY_bot
|
53 |
|
54 |
+
|
55 |
+
|
56 |
+
# download_gitlab_repo_to_hfspace(GITLAB_API_URL, GITLAB_PROJECT_ID, GITLAB_PROJECT_VERSION, DATA_DIR, hf_api, HF_SPACE_NAME)
|
57 |
+
|
58 |
+
# code_texts, code_references = extract_repo_files(DATA_DIR, ['kadi_apy'], [])
|
59 |
+
# doc_texts, doc_references = extract_repo_files(DATA_DIR, ['docs'], [])
|
60 |
+
|
61 |
+
# print("Length of code_texts: ", len(code_texts))
|
62 |
+
# print("Length of doc_files: ", len(doc_texts))
|
63 |
+
|
64 |
+
# code_chunks = chunk_pythoncode_and_add_metadata(code_texts, code_references)
|
65 |
+
# doc_chunks = chunk_text_and_add_metadata(doc_texts, doc_references, CHUNK_SIZE, CHUNK_OVERLAP)
|
66 |
+
|
67 |
+
# print(f"Total number of code_chunks: {len(code_chunks)}")
|
68 |
+
# print(f"Total number of doc_chunks: {len(doc_chunks)}")
|
69 |
+
|
70 |
+
vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), "data/vectorstore")
|
71 |
llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
|
72 |
|
73 |
kadiAPY_bot = KadiAPYBot(llm, vectorstore)
|
74 |
|
75 |
initialize()
|
76 |
|
77 |
+
|
78 |
+
|
79 |
+
def bot_kadi(history):
|
80 |
+
user_query = history[-1][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
response = kadiAPY_bot.process_query(user_query)
|
|
|
|
|
|
|
|
|
82 |
history[-1] = (user_query, response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
yield history
|
85 |
+
|
86 |
|
87 |
+
|
88 |
+
# Gradio utils
|
89 |
def check_input_text(text):
|
90 |
if not text:
|
91 |
gr.Warning("Please input a question.")
|
92 |
raise TypeError
|
93 |
return True
|
94 |
+
|
95 |
+
def add_text(history, text):
|
96 |
+
history = history + [(text, None)]
|
97 |
+
yield history, ""
|
98 |
+
|
99 |
+
|
100 |
+
import gradio as gr
|
101 |
+
|
102 |
def main():
|
103 |
with gr.Blocks() as demo:
|
104 |
gr.Markdown("## KadiAPY - AI Coding-Assistant")
|
|
|
109 |
with gr.Column(scale=10):
|
110 |
chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
|
111 |
user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
|
|
|
|
|
|
|
112 |
|
113 |
with gr.Row():
|
114 |
with gr.Column(scale=1):
|
|
|
129 |
examples_per_page=3,
|
130 |
)
|
131 |
|
132 |
+
user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
|
133 |
+
submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
|
|
|
|
|
|
|
|
|
134 |
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
|
|
135 |
|
136 |
+
demo.launch()
|
137 |
+
|
138 |
+
|
139 |
if __name__ == "__main__":
|
140 |
main()
|