bupa1018 commited on
Commit
d8207a8
·
1 Parent(s): 34ce225

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -45
app.py CHANGED
@@ -5,76 +5,100 @@ import streamlit as st
5
  from huggingface_hub import HfApi, login
6
  from dotenv import load_dotenv
7
 
 
 
 
 
8
  from llm import get_groq_llm
9
  from vectorstore import get_chroma_vectorstore
10
  from embeddings import get_SFR_Code_embedding_model
11
  from kadi_apy_bot import KadiAPYBot
 
12
 
13
  # Load environment variables from .env file
14
  load_dotenv()
15
 
16
- vectorstore_path = "data/vectorstore"
 
 
 
17
 
18
  GROQ_API_KEY = os.environ["GROQ_API_KEY"]
19
  HF_TOKEN = os.environ["HF_Token"]
20
 
21
- with open("config.json", "r") as file:
22
- config = json.load(file)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  login(HF_TOKEN)
25
  hf_api = HfApi()
26
 
27
- # Access the values
28
- LLM_MODEL_NAME = config["llm_model_name"]
29
- LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"])
30
 
31
  def initialize():
32
  global kadiAPY_bot
33
 
34
- vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
36
 
37
  kadiAPY_bot = KadiAPYBot(llm, vectorstore)
38
 
39
  initialize()
40
 
41
- def bot_kadi(history, state):
42
- """
43
- Handle user input and generate bot response using gr.State().
44
- """
45
- user_query = history[-1][0]
46
-
47
- # Add user query to the bot's state for session-specific history
48
- state["history"].append({"query": user_query, "response": None})
49
-
50
- # Process the query with the bot and generate a response
51
  response = kadiAPY_bot.process_query(user_query)
52
-
53
- # Save the response back to session state
54
- state["history"][-1]["response"] = response
55
-
56
  history[-1] = (user_query, response)
57
- yield history
58
-
59
- # Gradio UI
60
- def add_text(history, text, state):
61
- """
62
- Add user text to history and initialize state if needed.
63
- """
64
- if "history" not in state:
65
- state["history"] = [] # Initialize session-specific state
66
- if history is None or len(history) == 0:
67
- history = [] # Initialize empty history list
68
 
69
- history = history + [(text, None)]
70
- yield history, ""
71
 
 
 
72
  def check_input_text(text):
73
  if not text:
74
  gr.Warning("Please input a question.")
75
  raise TypeError
76
  return True
77
-
 
 
 
 
 
 
 
78
  def main():
79
  with gr.Blocks() as demo:
80
  gr.Markdown("## KadiAPY - AI Coding-Assistant")
@@ -85,9 +109,6 @@ def main():
85
  with gr.Column(scale=10):
86
  chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
87
  user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
88
-
89
- # Create session-specific state with gr.State
90
- session_state = gr.State()
91
 
92
  with gr.Row():
93
  with gr.Column(scale=1):
@@ -108,14 +129,12 @@ def main():
108
  examples_per_page=3,
109
  )
110
 
111
- user_txt.submit(check_input_text, user_txt, None)
112
- .success(add_text, [chatbot, user_txt, session_state], [chatbot, user_txt])
113
- .then(bot_kadi, [chatbot, session_state], [chatbot])
114
- submit_btn.click(check_input_text, user_txt, None)
115
- .success(add_text, [chatbot, user_txt, session_state], [chatbot, user_txt])
116
- .then(bot_kadi, [chatbot, session_state], [chatbot])
117
  clear_btn.click(lambda: None, None, chatbot, queue=False)
118
- demo.launch()
119
 
 
 
 
120
  if __name__ == "__main__":
121
  main()
 
5
  from huggingface_hub import HfApi, login
6
  from dotenv import load_dotenv
7
 
8
+ from download_repo import download_gitlab_repo_to_hfspace
9
+ from process_repo import extract_repo_files
10
+ from chunking import chunk_pythoncode_and_add_metadata, chunk_text_and_add_metadata
11
+ from vectorstore import setup_vectorstore
12
  from llm import get_groq_llm
13
  from vectorstore import get_chroma_vectorstore
14
  from embeddings import get_SFR_Code_embedding_model
15
  from kadi_apy_bot import KadiAPYBot
16
+ from repo_versions import store_message_from_json
17
 
18
  # Load environment variables from .env file
19
  load_dotenv()
20
 
21
+ # Load configuration from JSON file
22
+
23
+ with open("config.json", "r") as file:
24
+ config = json.load(file)
25
 
26
  GROQ_API_KEY = os.environ["GROQ_API_KEY"]
27
  HF_TOKEN = os.environ["HF_Token"]
28
 
29
+
30
+ VECTORSTORE_DIRECTORY = config["vectorstore_directory"]
31
+ CHUNK_SIZE = config["chunking"]["chunk_size"]
32
+ CHUNK_OVERLAP = config["chunking"]["chunk_overlap"]
33
+
34
+ EMBEDDING_MODEL_NAME = config["embedding_model"]["name"]
35
+ EMBEDDING_MODEL_VERSION = config["embedding_model"]["version"]
36
+
37
+ LLM_MODEL_NAME = config["llm_model"]["name"]
38
+ LLM_MODEL_TEMPERATURE = config["llm_model"]["temperature"]
39
+
40
+ GITLAB_API_URL = config["gitlab"]["api_url"]
41
+ GITLAB_PROJECT_ID = config["gitlab"]["project id"]
42
+ GITLAB_PROJECT_VERSION = config["gitlab"]["project version"]
43
+
44
+ DATA_DIR = config["data_dir"]
45
+ HF_SPACE_NAME = config["hf_space_name"]
46
 
47
  login(HF_TOKEN)
48
  hf_api = HfApi()
49
 
 
 
 
50
 
51
  def initialize():
52
  global kadiAPY_bot
53
 
54
+
55
+
56
+ # download_gitlab_repo_to_hfspace(GITLAB_API_URL, GITLAB_PROJECT_ID, GITLAB_PROJECT_VERSION, DATA_DIR, hf_api, HF_SPACE_NAME)
57
+
58
+ # code_texts, code_references = extract_repo_files(DATA_DIR, ['kadi_apy'], [])
59
+ # doc_texts, doc_references = extract_repo_files(DATA_DIR, ['docs'], [])
60
+
61
+ # print("Length of code_texts: ", len(code_texts))
62
+ # print("Length of doc_files: ", len(doc_texts))
63
+
64
+ # code_chunks = chunk_pythoncode_and_add_metadata(code_texts, code_references)
65
+ # doc_chunks = chunk_text_and_add_metadata(doc_texts, doc_references, CHUNK_SIZE, CHUNK_OVERLAP)
66
+
67
+ # print(f"Total number of code_chunks: {len(code_chunks)}")
68
+ # print(f"Total number of doc_chunks: {len(doc_chunks)}")
69
+
70
+ vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), "data/vectorstore")
71
  llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY)
72
 
73
  kadiAPY_bot = KadiAPYBot(llm, vectorstore)
74
 
75
  initialize()
76
 
77
+
78
+
79
+ def bot_kadi(history):
80
+ user_query = history[-1][0]
 
 
 
 
 
 
81
  response = kadiAPY_bot.process_query(user_query)
 
 
 
 
82
  history[-1] = (user_query, response)
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ yield history
85
+
86
 
87
+
88
+ # Gradio utils
89
  def check_input_text(text):
90
  if not text:
91
  gr.Warning("Please input a question.")
92
  raise TypeError
93
  return True
94
+
95
+ def add_text(history, text):
96
+ history = history + [(text, None)]
97
+ yield history, ""
98
+
99
+
100
+ import gradio as gr
101
+
102
  def main():
103
  with gr.Blocks() as demo:
104
  gr.Markdown("## KadiAPY - AI Coding-Assistant")
 
109
  with gr.Column(scale=10):
110
  chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600)
111
  user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit")
 
 
 
112
 
113
  with gr.Row():
114
  with gr.Column(scale=1):
 
129
  examples_per_page=3,
130
  )
131
 
132
+ user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
133
+ submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then(bot_kadi, [chatbot], [chatbot])
 
 
 
 
134
  clear_btn.click(lambda: None, None, chatbot, queue=False)
 
135
 
136
+ demo.launch()
137
+
138
+
139
  if __name__ == "__main__":
140
  main()