import os import json import gradio as gr from huggingface_hub import HfApi, login from dotenv import load_dotenv from download_repo import download_gitlab_repo_to_hfspace from process_repo import extract_repo_files from chunking import chunk_pythoncode_and_add_metadata, chunk_text_and_add_metadata from vectorstore import setup_vectorstore from llm import get_groq_llm from kadi_apy_bot import KadiAPYBot from repo_versions import store_message_from_json # Load environment variables from .env file load_dotenv() # Load configuration from JSON file with open("config.json", "r") as file: config = json.load(file) GROQ_API_KEY = os.environ["GROQ_API_KEY"] HF_TOKEN = os.environ["HF_Token"] VECTORSTORE_DIRECTORY = config["vectorstore_directory"] CHUNK_SIZE = config["chunking"]["chunk_size"] CHUNK_OVERLAP = config["chunking"]["chunk_overlap"] EMBEDDING_MODEL_NAME = config["embedding_model"]["name"] EMBEDDING_MODEL_VERSION = config["embedding_model"]["version"] LLM_MODEL_NAME = config["llm_model"]["name"] LLM_MODEL_TEMPERATURE = config["llm_model"]["temperature"] GITLAB_API_URL = config["gitlab"]["api_url"] GITLAB_PROJECT_ID = config["gitlab"]["project id"] GITLAB_PROJECT_VERSION = config["gitlab"]["project version"] DATA_DIR = config["data_dir"] HF_SPACE_NAME = config["hf_space_name"] login(HF_TOKEN) hf_api = HfApi() def initialize(): global kadiAPY_bot download_gitlab_repo_to_hfspace(GITLAB_API_URL, GITLAB_PROJECT_ID, GITLAB_PROJECT_VERSION, DATA_DIR, hf_api, HF_SPACE_NAME) code_texts, code_references = extract_repo_files(DATA_DIR, ['kadi_apy'], []) doc_texts, doc_references = extract_repo_files(DATA_DIR, ['docs'], []) print("Length of code_texts: ", len(code_texts)) print("Length of doc_files: ", len(doc_texts)) code_chunks = chunk_pythoncode_and_add_metadata(code_texts, code_references) doc_chunks = chunk_text_and_add_metadata(doc_texts, doc_references, CHUNK_SIZE, CHUNK_OVERLAP) print(f"Total number of code_chunks: {len(code_chunks)}") print(f"Total number of doc_chunks: {len(doc_chunks)}") vectorstore = setup_vectorstore(doc_chunks + code_chunks, EMBEDDING_MODEL_NAME, VECTORSTORE_DIRECTORY) llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) kadiAPY_bot = KadiAPYBot(llm, vectorstore) initialize() import streamlit as st def main(): st.set_page_config(page_title="KadiAPY - AI Coding-Assistant", layout="wide") st.title("KadiAPY - AI Coding-Assistant") st.markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") tab1, tab2 = st.tabs(["KadiAPY - AI Assistant", "Try Asking"]) with tab1: st.write("### Kadi Bot") if "chat_history" not in st.session_state: st.session_state.chat_history = [] # Chatbot chatbot_placeholder = st.empty() question = st.text_input("Question", placeholder="Type in your question and press Enter") if st.button("Submit"): if question: st.session_state.chat_history.append({"User": question}) response = bot_kadi(question) # Replace `bot_kadi` with your response generation function st.session_state.chat_history.append({"Kadi Bot": response}) if st.button("Clear"): st.session_state.chat_history = [] for exchange in st.session_state.chat_history: for speaker, text in exchange.items(): st.write(f"**{speaker}:** {text}") with tab2: st.write("### Try Asking...") examples = [ "Write me a python script which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure", "I need a method to upload a file to a record. The id of the record is 3", ] for example in examples: st.write(f"- {example}") def bot_kadi(question): # Dummy function for the AI response, replace with your logic return "This is a placeholder response from Kadi Bot." if __name__ == "__main__": main()