import os import json import gradio as gr import streamlit as st from huggingface_hub import HfApi, login from dotenv import load_dotenv from llm import get_groq_llm from vectorstore import get_chroma_vectorstore from embeddings import get_SFR_Code_embedding_model from kadiApy_ragchain import KadiApyRagchain # Load environment variables from .env file load_dotenv() vectorstore_path = "data/vectorstore" GROQ_API_KEY = os.environ["GROQ_API_KEY"] HF_TOKEN = os.environ["HF_Token"] with open("config.json", "r") as file: config = json.load(file) login(HF_TOKEN) hf_api = HfApi() # Access the values LLM_MODEL_NAME = config["llm_model_name"] LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"]) def initialize(): global kadiAPY_ragchain vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path) llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore) initialize() def bot_kadi(history): user_query = history[-1][0] response = kadiAPY_ragchain.process_query(user_query) history[-1] = (user_query, response) yield history import gradio as gr def add_text_to_chatbot(chat_history, user_input): if user_input: chat_history.append((None, user_input)) response = "This is a placeholder response. Replace this with your AI logic." chat_history.append(("response", None)) return chat_history, "" def main(): with gr.Blocks() as demo: gr.Markdown("## KadiAPY - AI Coding-Assistant") gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") with gr.Tab("KadiAPY - AI Assistant"): with gr.Row(): with gr.Column(scale=10): chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") with gr.Row(): with gr.Column(scale=1): submit_btn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): clear_btn = gr.Button("Clear", variant="stop") gr.Examples( examples=[ "Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure", "I need a method to upload a file to a record. The id of the record is 3", ], inputs=user_txt, outputs=chatbot, fn=add_text_to_chatbot, label="Try asking...", cache_examples=False, examples_per_page=3, ) submit_btn.click(add_text_to_chatbot, [chatbot, user_txt], [chatbot, user_txt]) clear_btn.click(lambda: ([], ""), None, [chatbot, user_txt]) demo.launch() if __name__ == "__main__": main()