import os import json import gradio as gr import streamlit as st from huggingface_hub import HfApi, login from dotenv import load_dotenv from llm import get_groq_llm from vectorstore import get_chroma_vectorstore from embeddings import get_SFR_Code_embedding_model from kadi_apy_bot import KadiAPYBot # Load environment variables from .env file load_dotenv() vectorstore_path = "data/vectorstore" GROQ_API_KEY = os.environ["GROQ_API_KEY"] HF_TOKEN = os.environ["HF_Token"] with open('config.json', 'r') as file: config = json.load(file) login(HF_TOKEN) hf_api = HfApi() # Access the values LLM_MODEL_NAME = config['llm_model_name'] LLM_MODEL_TEMPERATURE = float(config['llm_model_temperature']) def initialize(): global kadiAPY_bot vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path) llm = get_groq_llm(LLM_MODEL_NAME, LLM_MODEL_TEMPERATURE, GROQ_API_KEY) kadiAPY_bot = KadiAPYBot(llm, vectorstore) initialize() def bot_kadi(history, session_state): user_query = history[-1][0] response = kadiAPY_bot.process_query({ "query": user_query, "history": session_state["conversation"] # Pass full conversation history }) # Update the session history history[-1] = (user_query, response) session_state["conversation"].append({"query": user_query, "response": response}) yield history # Gradio utils with session state def main(): with gr.Blocks() as demo: gr.Markdown("## KadiAPY - AI Coding-Assistant") gr.Markdown("AI assistant for KadiAPY based on RAG architecture powered by LLM") session_state = gr.State({"conversation": []}) with gr.Tab("KadiAPY - AI Assistant"): with gr.Row(): with gr.Column(scale=10): chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") with gr.Row(): with gr.Column(scale=1): submit_btn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): clear_btn = gr.Button("Clear", variant="stop") gr.Examples( examples=[ "Write me a python script which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure", "I need a method to upload a file to a record. The id of the record is 3", ], inputs=user_txt, outputs=chatbot, fn=add_text, label="Try asking...", cache_examples=False, examples_per_page=3, ) # Bind input and button to modified bot_kadi user_txt.submit(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then( bot_kadi, [chatbot, session_state], [chatbot] ) submit_btn.click(check_input_text, user_txt, None).success(add_text, [chatbot, user_txt], [chatbot, user_txt]).then( bot_kadi, [chatbot, session_state], [chatbot] ) clear_btn.click(lambda: None, None, chatbot, queue=False).then( lambda: {"conversation": []}, None, session_state, queue=False # Clear session state ) demo.launch() if __name__ == "__main__": main()