import os import json import gradio as gr from huggingface_hub import HfApi, login from dotenv import load_dotenv from llm import get_groq_llm from vectorstore import get_chroma_vectorstore from embeddings import get_SFR_Code_embedding_model from kadiApy_ragchain import KadiApyRagchain load_dotenv() vectorstore_path = "data/vectorstore" GROQ_API_KEY = os.environ["GROQ_API_KEY"] HF_TOKEN = os.environ["HF_Token"] with open("config.json", "r") as file: config = json.load(file) login(HF_TOKEN) hf_api = HfApi() LLM_MODEL_NAME = config["llm_model_name"] LLM_MODEL_TEMPERATURE = float(config["llm_model_temperature"]) class KadiBot: def __init__(self, llm, vectorstore): self.kadiAPY_ragchain = KadiApyRagchain(llm, vectorstore) def handle_chat(self, chat_history): if not chat_history: return chat_history user_query = chat_history[-1][0] response = self.kadiAPY_ragchain.process_query(user_query, chat_history) chat_history[-1] = (user_query, response) return chat_history def add_text_to_chat_history(chat_history, user_input): chat_history = chat_history + [(user_input, None)] return chat_history, "" def show_history(chat_history): return chat_history def clear_history(history): return [] def main(): vectorstore = get_chroma_vectorstore(get_SFR_Code_embedding_model(), vectorstore_path) llm = get_groq_llm("qwen-2.5-coder-32b", "0.0", GROQ_API_KEY) kadi_bot = KadiBot(llm, vectorstore) with gr.Blocks() as demo: gr.Markdown("## KadiAPY - AI Coding-Assistant") gr.Markdown("AI Coding-Assistnat for KadiAPY based on RAG architecture powered by LLM") # Create a state for session management chat_history = gr.State([]) with gr.Tab("KadiAPY - AI Assistant"): with gr.Row(): with gr.Column(scale=10): chatbot = gr.Chatbot([], elem_id="chatbot", label="Kadi Bot", bubble_full_width=False, show_copy_button=True, height=600) user_txt = gr.Textbox(label="Question", placeholder="Type in your question and press Enter or click Submit") with gr.Row(): with gr.Column(scale=1): submit_btn = gr.Button("Submit", variant="primary") with gr.Column(scale=1): clear_input_btn = gr.Button("Clear Input", variant="stop") with gr.Column(scale=1): clear_chat_btn = gr.Button("Reset Chat", variant="stop") # New button to clear chat history gr.Examples( examples=[ "Write me a python script with which can convert plain JSON to a Kadi4Mat-compatible extra metadata structure", "I need a method to upload a file to a record. The id of the record is 3", ], inputs=user_txt, outputs=chatbot, fn=add_text_to_chat_history, label="Try asking...", cache_examples=False, examples_per_page=3, ) # Use the state to persist chat history between interactions user_txt.submit(add_text_to_chat_history, [chat_history, user_txt], [chat_history, user_txt]).then(show_history, [chat_history], [chatbot])\ .then(kadi_bot.handle_chat, [chat_history], [chatbot]) submit_btn.click(add_text_to_chat_history, [chat_history, user_txt], [chat_history, user_txt]).then(show_history, [chat_history], [chatbot])\ .then(kadi_bot.handle_chat, [chat_history], [chatbot]) clear_input_btn.click(lambda: ("",), [], [user_txt]) clear_chat_btn.click(lambda: ([], ""), [], [chat_history, chatbot]) demo.launch() if __name__ == "__main__": main()