Spaces:
Sleeping
Sleeping
root
commited on
Commit
·
40e68f7
1
Parent(s):
0827931
init
Browse files- app.py +275 -0
- attention_custom.py +681 -0
- attention_processor_custom.py +0 -0
- pipeline_stable_diffusion_custom.py +1024 -0
- pnp.py +279 -0
- pnp_utils.py +169 -0
- preprocess.py +228 -0
- transformer_2d_custom.py +453 -0
- unet2d_custom.py +1314 -0
- unet_2d_blocks_custom.py +0 -0
app.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/app.py
|
2 |
+
|
3 |
+
# import spaces
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
import torch
|
7 |
+
import random
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
from glob import glob
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
from datetime import datetime
|
13 |
+
from safetensors import safe_open
|
14 |
+
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
from unet2d_custom import UNet2DConditionModel
|
18 |
+
import torch
|
19 |
+
from pipeline_stable_diffusion_custom import StableDiffusionPipeline
|
20 |
+
|
21 |
+
from diffusers import DDIMScheduler
|
22 |
+
from pnp_utils import *
|
23 |
+
import torchvision.transforms as T
|
24 |
+
from preprocess import get_timesteps
|
25 |
+
from preprocess import Preprocess
|
26 |
+
|
27 |
+
|
28 |
+
from pnp import PNP
|
29 |
+
|
30 |
+
sample_idx = 0
|
31 |
+
|
32 |
+
css = """
|
33 |
+
.toolbutton {
|
34 |
+
margin-buttom: 0em 0em 0em 0em;
|
35 |
+
max-width: 1.5em;
|
36 |
+
min-width: 1.5em !important;
|
37 |
+
height: 1.5em;
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
class AnimateController:
|
42 |
+
def __init__(self):
|
43 |
+
self.sr = 44100
|
44 |
+
self.save_steps = 50
|
45 |
+
self.device = 'cuda'
|
46 |
+
self.seed = 42
|
47 |
+
self.extract_reverse = False
|
48 |
+
self.save_dir = 'latents'
|
49 |
+
self.steps = 50
|
50 |
+
self.inversion_prompt = ''
|
51 |
+
|
52 |
+
|
53 |
+
self.seed = 42
|
54 |
+
seed_everything(self.seed)
|
55 |
+
|
56 |
+
self.pnp = PNP(sd_version="1.4")
|
57 |
+
|
58 |
+
self.pnp.unet.to(self.device)
|
59 |
+
self.pnp.audio_projector.to(self.device)
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
# audio_projector_path = "ckpts/audio_projector_landscape.pth"
|
64 |
+
# gate_dict_path = "ckpts/landscape.pt"
|
65 |
+
# self.pnp.set_audio_projector(gate_dict_path, audio_projector_path)
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
#@spaces.GPU
|
71 |
+
def preprocess(self, image=None):
|
72 |
+
|
73 |
+
model_key = "CompVis/stable-diffusion-v1-4"
|
74 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
75 |
+
toy_scheduler.set_timesteps(self.save_steps)
|
76 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=self.save_steps,
|
77 |
+
strength=1.0,
|
78 |
+
device=self.device)
|
79 |
+
|
80 |
+
save_path = os.path.join(self.save_dir + "_forward")
|
81 |
+
os.makedirs(save_path, exist_ok=True)
|
82 |
+
model = Preprocess(self.device, sd_version='1.4', hf_key=None)
|
83 |
+
recon_image = model.extract_latents(data_path=image,
|
84 |
+
num_steps=self.steps,
|
85 |
+
save_path=save_path,
|
86 |
+
timesteps_to_save=timesteps_to_save,
|
87 |
+
inversion_prompt=self.inversion_prompt,
|
88 |
+
extract_reverse=False)
|
89 |
+
|
90 |
+
T.ToPILImage()(recon_image[0]).save(os.path.join(save_path, f'recon.jpg'))
|
91 |
+
|
92 |
+
#@spaces.GPU
|
93 |
+
def generate(self, file=None, audio=None, prompt=None,
|
94 |
+
cfg_scale=5, image_path=None,
|
95 |
+
pnp_f_t=0.8, pnp_attn_t=0.8,):
|
96 |
+
|
97 |
+
image = self.pnp.run_pnp(
|
98 |
+
n_timesteps=50,
|
99 |
+
pnp_f_t=pnp_f_t, pnp_attn_t=pnp_attn_t,
|
100 |
+
prompt=prompt,
|
101 |
+
negative_prompt="",
|
102 |
+
audio_path=audio,
|
103 |
+
image_path=image_path,
|
104 |
+
cfg_scale=cfg_scale,
|
105 |
+
)
|
106 |
+
|
107 |
+
return image
|
108 |
+
|
109 |
+
# @spaces.GPU
|
110 |
+
# def update_audio_model(self, audio_model_update):
|
111 |
+
|
112 |
+
# print(f"changing ckpts audio model {audio_model_update}")
|
113 |
+
|
114 |
+
# if audio_model_update == "Landscape Model":
|
115 |
+
# audio_projector_path = "ckpts/audio_projector_landscape.pth"
|
116 |
+
# gate_dict_path = "ckpts/landscape.pt"
|
117 |
+
# else:
|
118 |
+
# audio_projector_path = "ckpts/audio_projector_gh.pth"
|
119 |
+
# gate_dict_path = "ckpts/greatest_hits.pt"
|
120 |
+
|
121 |
+
# self.pnp.set_audio_projector(gate_dict_path, audio_projector_path)
|
122 |
+
# self.pnp.changed_model = True
|
123 |
+
|
124 |
+
# # gate_dict = torch.load(gate_dict_path)
|
125 |
+
|
126 |
+
# # for name, param in self.pnp.unet.named_parameters():
|
127 |
+
# # if "adapter" in name:
|
128 |
+
# # param.data = gate_dict[name]
|
129 |
+
|
130 |
+
# # self.pnp.audio_projector.load_state_dict(torch.load(audio_projector_path))
|
131 |
+
# # self.pnp.unet.to(self.device)
|
132 |
+
# # self.pnp.audio_projector.to(self.device)
|
133 |
+
|
134 |
+
# return gr.Dropdown()
|
135 |
+
|
136 |
+
controller = AnimateController()
|
137 |
+
|
138 |
+
|
139 |
+
def ui():
|
140 |
+
with gr.Blocks(css=css) as demo:
|
141 |
+
gr.Markdown(
|
142 |
+
"""
|
143 |
+
# [SonicDiffusion: Audio-Driven Image Generation and Editing with Pretrained Diffusion Models]
|
144 |
+
"""
|
145 |
+
)
|
146 |
+
with gr.Row():
|
147 |
+
audio_input = gr.Audio(sources="upload", type="filepath")
|
148 |
+
prompt_textbox = gr.Textbox(label="Prompt", lines=2)
|
149 |
+
|
150 |
+
with gr.Row():
|
151 |
+
with gr.Column():
|
152 |
+
pnp_f_t = gr.Slider(label="PNP Residual Injection", step=0.1, value=0.8, minimum=0.0, maximum=1.0)
|
153 |
+
pnp_attn_t = gr.Slider(label="PNP Attention Injection", step=0.1, value=0.8, minimum=0.0, maximum=1.0)
|
154 |
+
|
155 |
+
with gr.Column():
|
156 |
+
audio_model_dropdown = gr.Dropdown(
|
157 |
+
label="Select SonicDiffusion model",
|
158 |
+
value="Landscape Model",
|
159 |
+
choices=["Landscape Model", "Greatest Hits Model"],
|
160 |
+
interactive=True,
|
161 |
+
)
|
162 |
+
|
163 |
+
# audio_model_dropdown.change(fn=controller.update_audio_model, inputs=[audio_model_dropdown], outputs=[audio_model_dropdown])
|
164 |
+
cfg_scale_slider = gr.Slider(label="CFG Scale", step=0.5, value=7.5, minimum=0, maximum=20)
|
165 |
+
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
preprocess_button = gr.Button(value="Preprocess", variant='primary')
|
169 |
+
generate_button = gr.Button(value="Generate", variant='primary')
|
170 |
+
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Column():
|
174 |
+
image_input = gr.Image(label="Input Image Component", sources="upload", type="filepath")
|
175 |
+
|
176 |
+
with gr.Column():
|
177 |
+
output = gr.Image(label="Output Image Component",
|
178 |
+
height=512, width=512)
|
179 |
+
|
180 |
+
with gr.Row():
|
181 |
+
|
182 |
+
examples_img_1 = [
|
183 |
+
[Image.open("assets/corridor.png")],
|
184 |
+
[Image.open("assets/desert.png")],
|
185 |
+
[Image.open("assets/forest.png")],
|
186 |
+
[Image.open("assets/forest_painting.png")],
|
187 |
+
[Image.open("assets/golf_field.png")],
|
188 |
+
[Image.open("assets/human.png")],
|
189 |
+
[Image.open("assets/wood.png")],
|
190 |
+
[Image.open("assets/house.png")],
|
191 |
+
|
192 |
+
[Image.open("assets/apple.png")],
|
193 |
+
[Image.open("assets/chair.png")],
|
194 |
+
[Image.open("assets/hands.png")],
|
195 |
+
[Image.open("assets/pineapple.png")],
|
196 |
+
[Image.open("assets/table.png")],
|
197 |
+
]
|
198 |
+
gr.Examples(examples=examples_img_1,inputs=[image_input], label="Images")
|
199 |
+
|
200 |
+
|
201 |
+
# examples_img_2 = [
|
202 |
+
# [Image.open("assets/apple.png")],
|
203 |
+
# [Image.open("assets/chair.png")],
|
204 |
+
# [Image.open("assets/hands.png")],
|
205 |
+
# [Image.open("assets/pineapple.png")],
|
206 |
+
# [Image.open("assets/table.png")],
|
207 |
+
# ]
|
208 |
+
# gr.Examples(examples=examples,inputs=[image_input], label="Greatest Hits Images")
|
209 |
+
|
210 |
+
examples2 = [
|
211 |
+
['./assets/fire_crackling.wav'],
|
212 |
+
['./assets/forest_birds.wav'],
|
213 |
+
['./assets/forest_stepping_on_branches.wav'],
|
214 |
+
['./assets/howling_wind.wav'],
|
215 |
+
['./assets/rain.wav'],
|
216 |
+
['./assets/splashing_water.wav'],
|
217 |
+
['./assets/splashing_water_soft.wav'],
|
218 |
+
['./assets/steps_on_snow.wav'],
|
219 |
+
['./assets/thunder.wav'],
|
220 |
+
['./assets/underwater.wav'],
|
221 |
+
['./assets/waterfall_burble.wav'],
|
222 |
+
['./assets/wind_noise_birds.wav'],
|
223 |
+
]
|
224 |
+
|
225 |
+
gr.Examples(examples=examples2,inputs=[audio_input], label="Landscape Audios")
|
226 |
+
|
227 |
+
|
228 |
+
examples3 = [
|
229 |
+
['./assets/cardboard.wav'],
|
230 |
+
['./assets/carpet.wav'],
|
231 |
+
['./assets/ceramic.wav'],
|
232 |
+
['./assets/cloth.wav'],
|
233 |
+
['./assets/gravel.wav'],
|
234 |
+
['./assets/leaf.wav'],
|
235 |
+
['./assets/metal.wav'],
|
236 |
+
['./assets/plastic_bag.wav'],
|
237 |
+
['./assets/plastic.wav'],
|
238 |
+
['./assets/rock.wav'],
|
239 |
+
['./assets/wood.wav'],
|
240 |
+
]
|
241 |
+
gr.Examples(examples=examples3,inputs=[audio_input], label="Greatest Hits Audios")
|
242 |
+
|
243 |
+
|
244 |
+
preprocess_button.click(
|
245 |
+
fn=controller.preprocess,
|
246 |
+
inputs=[
|
247 |
+
image_input
|
248 |
+
],
|
249 |
+
outputs=output
|
250 |
+
)
|
251 |
+
|
252 |
+
|
253 |
+
generate_button.click(
|
254 |
+
fn=controller.generate,
|
255 |
+
inputs=[
|
256 |
+
audio_model_dropdown,
|
257 |
+
audio_input,
|
258 |
+
prompt_textbox,
|
259 |
+
cfg_scale_slider,
|
260 |
+
image_input,
|
261 |
+
pnp_f_t,
|
262 |
+
pnp_attn_t,
|
263 |
+
],
|
264 |
+
outputs=output
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
return demo
|
269 |
+
|
270 |
+
|
271 |
+
|
272 |
+
if __name__ == "__main__":
|
273 |
+
demo = ui()
|
274 |
+
demo.launch(share=True)
|
275 |
+
|
attention_custom.py
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from diffusers.utils import deprecate, logging
|
10 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
11 |
+
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU
|
12 |
+
from diffusers.models.attention_processor import Attention
|
13 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
14 |
+
from diffusers.models.normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
|
15 |
+
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
21 |
+
# "feed_forward_chunk_size" can be used to save memory
|
22 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
23 |
+
raise ValueError(
|
24 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
25 |
+
)
|
26 |
+
|
27 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
28 |
+
ff_output = torch.cat(
|
29 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
30 |
+
dim=chunk_dim,
|
31 |
+
)
|
32 |
+
return ff_output
|
33 |
+
|
34 |
+
|
35 |
+
@maybe_allow_in_graph
|
36 |
+
class GatedSelfAttentionDense(nn.Module):
|
37 |
+
r"""
|
38 |
+
A gated self-attention dense layer that combines visual features and object features.
|
39 |
+
|
40 |
+
Parameters:
|
41 |
+
query_dim (`int`): The number of channels in the query.
|
42 |
+
context_dim (`int`): The number of channels in the context.
|
43 |
+
n_heads (`int`): The number of heads to use for attention.
|
44 |
+
d_head (`int`): The number of channels in each head.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
48 |
+
super().__init__()
|
49 |
+
|
50 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
51 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
52 |
+
|
53 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
54 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
55 |
+
|
56 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
57 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
58 |
+
|
59 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
60 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
61 |
+
|
62 |
+
self.enabled = True
|
63 |
+
|
64 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
65 |
+
if not self.enabled:
|
66 |
+
return x
|
67 |
+
|
68 |
+
n_visual = x.shape[1]
|
69 |
+
objs = self.linear(objs)
|
70 |
+
|
71 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
72 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
73 |
+
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
@maybe_allow_in_graph
|
78 |
+
class BasicTransformerBlock(nn.Module):
|
79 |
+
r"""
|
80 |
+
A basic Transformer block.
|
81 |
+
|
82 |
+
Parameters:
|
83 |
+
dim (`int`): The number of channels in the input and output.
|
84 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
85 |
+
attention_head_dim (`int`): The number of channels in each head.
|
86 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
87 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
88 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
89 |
+
num_embeds_ada_norm (:
|
90 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
91 |
+
attention_bias (:
|
92 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
93 |
+
only_cross_attention (`bool`, *optional*):
|
94 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
95 |
+
double_self_attention (`bool`, *optional*):
|
96 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
97 |
+
upcast_attention (`bool`, *optional*):
|
98 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
99 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
100 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
101 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
102 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
103 |
+
final_dropout (`bool` *optional*, defaults to False):
|
104 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
105 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
106 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
107 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
108 |
+
The type of positional embeddings to apply to.
|
109 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
110 |
+
The maximum number of positional embeddings to apply.
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
dim: int,
|
116 |
+
num_attention_heads: int,
|
117 |
+
attention_head_dim: int,
|
118 |
+
dropout=0.0,
|
119 |
+
cross_attention_dim: Optional[int] = None,
|
120 |
+
activation_fn: str = "geglu",
|
121 |
+
num_embeds_ada_norm: Optional[int] = None,
|
122 |
+
attention_bias: bool = False,
|
123 |
+
only_cross_attention: bool = False,
|
124 |
+
double_self_attention: bool = False,
|
125 |
+
upcast_attention: bool = False,
|
126 |
+
norm_elementwise_affine: bool = True,
|
127 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
128 |
+
norm_eps: float = 1e-5,
|
129 |
+
final_dropout: bool = False,
|
130 |
+
attention_type: str = "default",
|
131 |
+
positional_embeddings: Optional[str] = None,
|
132 |
+
num_positional_embeddings: Optional[int] = None,
|
133 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
134 |
+
ada_norm_bias: Optional[int] = None,
|
135 |
+
ff_inner_dim: Optional[int] = None,
|
136 |
+
ff_bias: bool = True,
|
137 |
+
attention_out_bias: bool = True,
|
138 |
+
use_adapter: bool = False,
|
139 |
+
):
|
140 |
+
super().__init__()
|
141 |
+
self.only_cross_attention = only_cross_attention
|
142 |
+
|
143 |
+
# We keep these boolean flags for backward-compatibility.
|
144 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
145 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
146 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
147 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
148 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
149 |
+
|
150 |
+
self.use_adapter = use_adapter
|
151 |
+
|
152 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
153 |
+
raise ValueError(
|
154 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
155 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
156 |
+
)
|
157 |
+
|
158 |
+
self.norm_type = norm_type
|
159 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
160 |
+
|
161 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
162 |
+
raise ValueError(
|
163 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
164 |
+
)
|
165 |
+
|
166 |
+
if positional_embeddings == "sinusoidal":
|
167 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
168 |
+
else:
|
169 |
+
self.pos_embed = None
|
170 |
+
|
171 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
172 |
+
# 1. Self-Attn
|
173 |
+
if norm_type == "ada_norm":
|
174 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
175 |
+
elif norm_type == "ada_norm_zero":
|
176 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
177 |
+
elif norm_type == "ada_norm_continuous":
|
178 |
+
self.norm1 = AdaLayerNormContinuous(
|
179 |
+
dim,
|
180 |
+
ada_norm_continous_conditioning_embedding_dim,
|
181 |
+
norm_elementwise_affine,
|
182 |
+
norm_eps,
|
183 |
+
ada_norm_bias,
|
184 |
+
"rms_norm",
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
188 |
+
|
189 |
+
self.attn1 = Attention(
|
190 |
+
query_dim=dim,
|
191 |
+
heads=num_attention_heads,
|
192 |
+
dim_head=attention_head_dim,
|
193 |
+
dropout=dropout,
|
194 |
+
bias=attention_bias,
|
195 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
196 |
+
upcast_attention=upcast_attention,
|
197 |
+
out_bias=attention_out_bias,
|
198 |
+
)
|
199 |
+
|
200 |
+
# 2. Cross-Attn
|
201 |
+
if cross_attention_dim is not None or double_self_attention:
|
202 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
203 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
204 |
+
# the second cross attention block.
|
205 |
+
if norm_type == "ada_norm":
|
206 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
207 |
+
elif norm_type == "ada_norm_continuous":
|
208 |
+
self.norm2 = AdaLayerNormContinuous(
|
209 |
+
dim,
|
210 |
+
ada_norm_continous_conditioning_embedding_dim,
|
211 |
+
norm_elementwise_affine,
|
212 |
+
norm_eps,
|
213 |
+
ada_norm_bias,
|
214 |
+
"rms_norm",
|
215 |
+
)
|
216 |
+
else:
|
217 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
218 |
+
|
219 |
+
self.attn2 = Attention(
|
220 |
+
query_dim=dim,
|
221 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
222 |
+
heads=num_attention_heads,
|
223 |
+
dim_head=attention_head_dim,
|
224 |
+
dropout=dropout,
|
225 |
+
bias=attention_bias,
|
226 |
+
upcast_attention=upcast_attention,
|
227 |
+
out_bias=attention_out_bias,
|
228 |
+
) # is self-attn if encoder_hidden_states is none
|
229 |
+
else:
|
230 |
+
self.norm2 = None
|
231 |
+
self.attn2 = None
|
232 |
+
|
233 |
+
if use_adapter:
|
234 |
+
self.attn_adapter = Attention(
|
235 |
+
query_dim=dim,
|
236 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
237 |
+
heads=num_attention_heads,
|
238 |
+
dim_head=attention_head_dim,
|
239 |
+
dropout=dropout,
|
240 |
+
bias=attention_bias,
|
241 |
+
upcast_attention=upcast_attention,
|
242 |
+
out_bias=attention_out_bias,
|
243 |
+
)
|
244 |
+
self.norm_adapter = nn.LayerNorm(dim)
|
245 |
+
self.gate_adapter = nn.Parameter(torch.tensor([0.1]))
|
246 |
+
|
247 |
+
|
248 |
+
# 3. Feed-forward
|
249 |
+
if norm_type == "ada_norm_continuous":
|
250 |
+
self.norm3 = AdaLayerNormContinuous(
|
251 |
+
dim,
|
252 |
+
ada_norm_continous_conditioning_embedding_dim,
|
253 |
+
norm_elementwise_affine,
|
254 |
+
norm_eps,
|
255 |
+
ada_norm_bias,
|
256 |
+
"layer_norm",
|
257 |
+
)
|
258 |
+
|
259 |
+
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm", "ada_norm_continuous"]:
|
260 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
261 |
+
elif norm_type == "layer_norm_i2vgen":
|
262 |
+
self.norm3 = None
|
263 |
+
|
264 |
+
self.ff = FeedForward(
|
265 |
+
dim,
|
266 |
+
dropout=dropout,
|
267 |
+
activation_fn=activation_fn,
|
268 |
+
final_dropout=final_dropout,
|
269 |
+
inner_dim=ff_inner_dim,
|
270 |
+
bias=ff_bias,
|
271 |
+
)
|
272 |
+
|
273 |
+
# 4. Fuser
|
274 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
275 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
276 |
+
|
277 |
+
# 5. Scale-shift for PixArt-Alpha.
|
278 |
+
if norm_type == "ada_norm_single":
|
279 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
280 |
+
|
281 |
+
# let chunk size default to None
|
282 |
+
self._chunk_size = None
|
283 |
+
self._chunk_dim = 0
|
284 |
+
|
285 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
286 |
+
# Sets chunk feed-forward
|
287 |
+
self._chunk_size = chunk_size
|
288 |
+
self._chunk_dim = dim
|
289 |
+
|
290 |
+
def forward(
|
291 |
+
self,
|
292 |
+
hidden_states: torch.FloatTensor,
|
293 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
294 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
295 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
296 |
+
timestep: Optional[torch.LongTensor] = None,
|
297 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
298 |
+
class_labels: Optional[torch.LongTensor] = None,
|
299 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
300 |
+
audio_context: Optional[torch.FloatTensor] = None,
|
301 |
+
f_multiplier: Optional[float] = 1.0,
|
302 |
+
) -> torch.FloatTensor:
|
303 |
+
if cross_attention_kwargs is not None:
|
304 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
305 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
|
306 |
+
|
307 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
308 |
+
# 0. Self-Attention
|
309 |
+
batch_size = hidden_states.shape[0]
|
310 |
+
|
311 |
+
if self.norm_type == "ada_norm":
|
312 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
313 |
+
elif self.norm_type == "ada_norm_zero":
|
314 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
315 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
316 |
+
)
|
317 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
318 |
+
norm_hidden_states = self.norm1(hidden_states)
|
319 |
+
elif self.norm_type == "ada_norm_continuous":
|
320 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
321 |
+
elif self.norm_type == "ada_norm_single":
|
322 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
323 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
324 |
+
).chunk(6, dim=1)
|
325 |
+
norm_hidden_states = self.norm1(hidden_states)
|
326 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
327 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
328 |
+
else:
|
329 |
+
raise ValueError("Incorrect norm used")
|
330 |
+
|
331 |
+
if self.pos_embed is not None:
|
332 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
333 |
+
|
334 |
+
# 1. Prepare GLIGEN inputs
|
335 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
336 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
337 |
+
|
338 |
+
attn_output = self.attn1(
|
339 |
+
norm_hidden_states,
|
340 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
341 |
+
attention_mask=attention_mask,
|
342 |
+
**cross_attention_kwargs,
|
343 |
+
)
|
344 |
+
if self.norm_type == "ada_norm_zero":
|
345 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
346 |
+
elif self.norm_type == "ada_norm_single":
|
347 |
+
attn_output = gate_msa * attn_output
|
348 |
+
|
349 |
+
hidden_states = attn_output + hidden_states
|
350 |
+
if hidden_states.ndim == 4:
|
351 |
+
hidden_states = hidden_states.squeeze(1)
|
352 |
+
|
353 |
+
# 1.2 GLIGEN Control
|
354 |
+
if gligen_kwargs is not None:
|
355 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
356 |
+
|
357 |
+
# 3. Cross-Attention
|
358 |
+
if self.attn2 is not None:
|
359 |
+
if self.norm_type == "ada_norm":
|
360 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
361 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
362 |
+
norm_hidden_states = self.norm2(hidden_states)
|
363 |
+
elif self.norm_type == "ada_norm_single":
|
364 |
+
# For PixArt norm2 isn't applied here:
|
365 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
366 |
+
norm_hidden_states = hidden_states
|
367 |
+
elif self.norm_type == "ada_norm_continuous":
|
368 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
369 |
+
else:
|
370 |
+
raise ValueError("Incorrect norm")
|
371 |
+
|
372 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
373 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
374 |
+
|
375 |
+
attn_output = self.attn2(
|
376 |
+
norm_hidden_states,
|
377 |
+
encoder_hidden_states=encoder_hidden_states,
|
378 |
+
attention_mask=encoder_attention_mask,
|
379 |
+
**cross_attention_kwargs,
|
380 |
+
)
|
381 |
+
hidden_states = attn_output + hidden_states
|
382 |
+
|
383 |
+
|
384 |
+
if self.use_adapter and audio_context is not None:
|
385 |
+
norm_hidden_states = self.norm_adapter(hidden_states)
|
386 |
+
attn_output = self.attn_adapter(norm_hidden_states, encoder_hidden_states=audio_context)*self.gate_adapter.tanh()
|
387 |
+
hidden_states = attn_output*f_multiplier + hidden_states
|
388 |
+
|
389 |
+
|
390 |
+
# 4. Feed-forward
|
391 |
+
# i2vgen doesn't have this norm 🤷♂️
|
392 |
+
if self.norm_type == "ada_norm_continuous":
|
393 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
394 |
+
elif not self.norm_type == "ada_norm_single":
|
395 |
+
norm_hidden_states = self.norm3(hidden_states)
|
396 |
+
|
397 |
+
if self.norm_type == "ada_norm_zero":
|
398 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
399 |
+
|
400 |
+
if self.norm_type == "ada_norm_single":
|
401 |
+
norm_hidden_states = self.norm2(hidden_states)
|
402 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
403 |
+
|
404 |
+
if self._chunk_size is not None:
|
405 |
+
# "feed_forward_chunk_size" can be used to save memory
|
406 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
407 |
+
else:
|
408 |
+
ff_output = self.ff(norm_hidden_states)
|
409 |
+
|
410 |
+
if self.norm_type == "ada_norm_zero":
|
411 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
412 |
+
elif self.norm_type == "ada_norm_single":
|
413 |
+
ff_output = gate_mlp * ff_output
|
414 |
+
|
415 |
+
hidden_states = ff_output + hidden_states
|
416 |
+
if hidden_states.ndim == 4:
|
417 |
+
hidden_states = hidden_states.squeeze(1)
|
418 |
+
|
419 |
+
return hidden_states
|
420 |
+
|
421 |
+
|
422 |
+
@maybe_allow_in_graph
|
423 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
424 |
+
r"""
|
425 |
+
A basic Transformer block for video like data.
|
426 |
+
|
427 |
+
Parameters:
|
428 |
+
dim (`int`): The number of channels in the input and output.
|
429 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
430 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
431 |
+
attention_head_dim (`int`): The number of channels in each head.
|
432 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
433 |
+
"""
|
434 |
+
|
435 |
+
def __init__(
|
436 |
+
self,
|
437 |
+
dim: int,
|
438 |
+
time_mix_inner_dim: int,
|
439 |
+
num_attention_heads: int,
|
440 |
+
attention_head_dim: int,
|
441 |
+
cross_attention_dim: Optional[int] = None,
|
442 |
+
):
|
443 |
+
super().__init__()
|
444 |
+
self.is_res = dim == time_mix_inner_dim
|
445 |
+
|
446 |
+
self.norm_in = nn.LayerNorm(dim)
|
447 |
+
|
448 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
449 |
+
# 1. Self-Attn
|
450 |
+
self.ff_in = FeedForward(
|
451 |
+
dim,
|
452 |
+
dim_out=time_mix_inner_dim,
|
453 |
+
activation_fn="geglu",
|
454 |
+
)
|
455 |
+
|
456 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
457 |
+
self.attn1 = Attention(
|
458 |
+
query_dim=time_mix_inner_dim,
|
459 |
+
heads=num_attention_heads,
|
460 |
+
dim_head=attention_head_dim,
|
461 |
+
cross_attention_dim=None,
|
462 |
+
)
|
463 |
+
|
464 |
+
# 2. Cross-Attn
|
465 |
+
if cross_attention_dim is not None:
|
466 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
467 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
468 |
+
# the second cross attention block.
|
469 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
470 |
+
self.attn2 = Attention(
|
471 |
+
query_dim=time_mix_inner_dim,
|
472 |
+
cross_attention_dim=cross_attention_dim,
|
473 |
+
heads=num_attention_heads,
|
474 |
+
dim_head=attention_head_dim,
|
475 |
+
) # is self-attn if encoder_hidden_states is none
|
476 |
+
else:
|
477 |
+
self.norm2 = None
|
478 |
+
self.attn2 = None
|
479 |
+
|
480 |
+
# 3. Feed-forward
|
481 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
482 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
483 |
+
|
484 |
+
# let chunk size default to None
|
485 |
+
self._chunk_size = None
|
486 |
+
self._chunk_dim = None
|
487 |
+
|
488 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
489 |
+
# Sets chunk feed-forward
|
490 |
+
self._chunk_size = chunk_size
|
491 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
492 |
+
self._chunk_dim = 1
|
493 |
+
|
494 |
+
def forward(
|
495 |
+
self,
|
496 |
+
hidden_states: torch.FloatTensor,
|
497 |
+
num_frames: int,
|
498 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
499 |
+
) -> torch.FloatTensor:
|
500 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
501 |
+
# 0. Self-Attention
|
502 |
+
batch_size = hidden_states.shape[0]
|
503 |
+
|
504 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
505 |
+
batch_size = batch_frames // num_frames
|
506 |
+
|
507 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
508 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
509 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
510 |
+
|
511 |
+
residual = hidden_states
|
512 |
+
hidden_states = self.norm_in(hidden_states)
|
513 |
+
|
514 |
+
if self._chunk_size is not None:
|
515 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
516 |
+
else:
|
517 |
+
hidden_states = self.ff_in(hidden_states)
|
518 |
+
|
519 |
+
if self.is_res:
|
520 |
+
hidden_states = hidden_states + residual
|
521 |
+
|
522 |
+
norm_hidden_states = self.norm1(hidden_states)
|
523 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
524 |
+
hidden_states = attn_output + hidden_states
|
525 |
+
|
526 |
+
# 3. Cross-Attention
|
527 |
+
if self.attn2 is not None:
|
528 |
+
norm_hidden_states = self.norm2(hidden_states)
|
529 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
530 |
+
hidden_states = attn_output + hidden_states
|
531 |
+
|
532 |
+
# 4. Feed-forward
|
533 |
+
norm_hidden_states = self.norm3(hidden_states)
|
534 |
+
|
535 |
+
if self._chunk_size is not None:
|
536 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
537 |
+
else:
|
538 |
+
ff_output = self.ff(norm_hidden_states)
|
539 |
+
|
540 |
+
if self.is_res:
|
541 |
+
hidden_states = ff_output + hidden_states
|
542 |
+
else:
|
543 |
+
hidden_states = ff_output
|
544 |
+
|
545 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
546 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
547 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
548 |
+
|
549 |
+
return hidden_states
|
550 |
+
|
551 |
+
|
552 |
+
class SkipFFTransformerBlock(nn.Module):
|
553 |
+
def __init__(
|
554 |
+
self,
|
555 |
+
dim: int,
|
556 |
+
num_attention_heads: int,
|
557 |
+
attention_head_dim: int,
|
558 |
+
kv_input_dim: int,
|
559 |
+
kv_input_dim_proj_use_bias: bool,
|
560 |
+
dropout=0.0,
|
561 |
+
cross_attention_dim: Optional[int] = None,
|
562 |
+
attention_bias: bool = False,
|
563 |
+
attention_out_bias: bool = True,
|
564 |
+
):
|
565 |
+
super().__init__()
|
566 |
+
if kv_input_dim != dim:
|
567 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
568 |
+
else:
|
569 |
+
self.kv_mapper = None
|
570 |
+
|
571 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
572 |
+
|
573 |
+
self.attn1 = Attention(
|
574 |
+
query_dim=dim,
|
575 |
+
heads=num_attention_heads,
|
576 |
+
dim_head=attention_head_dim,
|
577 |
+
dropout=dropout,
|
578 |
+
bias=attention_bias,
|
579 |
+
cross_attention_dim=cross_attention_dim,
|
580 |
+
out_bias=attention_out_bias,
|
581 |
+
)
|
582 |
+
|
583 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
584 |
+
|
585 |
+
self.attn2 = Attention(
|
586 |
+
query_dim=dim,
|
587 |
+
cross_attention_dim=cross_attention_dim,
|
588 |
+
heads=num_attention_heads,
|
589 |
+
dim_head=attention_head_dim,
|
590 |
+
dropout=dropout,
|
591 |
+
bias=attention_bias,
|
592 |
+
out_bias=attention_out_bias,
|
593 |
+
)
|
594 |
+
|
595 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
596 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
597 |
+
|
598 |
+
if self.kv_mapper is not None:
|
599 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
600 |
+
|
601 |
+
norm_hidden_states = self.norm1(hidden_states)
|
602 |
+
|
603 |
+
attn_output = self.attn1(
|
604 |
+
norm_hidden_states,
|
605 |
+
encoder_hidden_states=encoder_hidden_states,
|
606 |
+
**cross_attention_kwargs,
|
607 |
+
)
|
608 |
+
|
609 |
+
hidden_states = attn_output + hidden_states
|
610 |
+
|
611 |
+
norm_hidden_states = self.norm2(hidden_states)
|
612 |
+
|
613 |
+
attn_output = self.attn2(
|
614 |
+
norm_hidden_states,
|
615 |
+
encoder_hidden_states=encoder_hidden_states,
|
616 |
+
**cross_attention_kwargs,
|
617 |
+
)
|
618 |
+
|
619 |
+
hidden_states = attn_output + hidden_states
|
620 |
+
|
621 |
+
return hidden_states
|
622 |
+
|
623 |
+
|
624 |
+
class FeedForward(nn.Module):
|
625 |
+
r"""
|
626 |
+
A feed-forward layer.
|
627 |
+
|
628 |
+
Parameters:
|
629 |
+
dim (`int`): The number of channels in the input.
|
630 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
631 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
632 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
633 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
634 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
635 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
636 |
+
"""
|
637 |
+
|
638 |
+
def __init__(
|
639 |
+
self,
|
640 |
+
dim: int,
|
641 |
+
dim_out: Optional[int] = None,
|
642 |
+
mult: int = 4,
|
643 |
+
dropout: float = 0.0,
|
644 |
+
activation_fn: str = "geglu",
|
645 |
+
final_dropout: bool = False,
|
646 |
+
inner_dim=None,
|
647 |
+
bias: bool = True,
|
648 |
+
):
|
649 |
+
super().__init__()
|
650 |
+
if inner_dim is None:
|
651 |
+
inner_dim = int(dim * mult)
|
652 |
+
dim_out = dim_out if dim_out is not None else dim
|
653 |
+
linear_cls = nn.Linear
|
654 |
+
|
655 |
+
if activation_fn == "gelu":
|
656 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
657 |
+
if activation_fn == "gelu-approximate":
|
658 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
659 |
+
elif activation_fn == "geglu":
|
660 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
661 |
+
elif activation_fn == "geglu-approximate":
|
662 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
663 |
+
|
664 |
+
self.net = nn.ModuleList([])
|
665 |
+
# project in
|
666 |
+
self.net.append(act_fn)
|
667 |
+
# project dropout
|
668 |
+
self.net.append(nn.Dropout(dropout))
|
669 |
+
# project out
|
670 |
+
self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
|
671 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
672 |
+
if final_dropout:
|
673 |
+
self.net.append(nn.Dropout(dropout))
|
674 |
+
|
675 |
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
676 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
677 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
678 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
679 |
+
for module in self.net:
|
680 |
+
hidden_states = module(hidden_states)
|
681 |
+
return hidden_states
|
attention_processor_custom.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pipeline_stable_diffusion_custom.py
ADDED
@@ -0,0 +1,1024 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from packaging import version
|
8 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import FrozenDict
|
11 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
12 |
+
|
13 |
+
from diffusers.loaders import IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin, FromSingleFileMixin
|
14 |
+
|
15 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
16 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
17 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
18 |
+
from diffusers.utils import (
|
19 |
+
USE_PEFT_BACKEND,
|
20 |
+
deprecate,
|
21 |
+
logging,
|
22 |
+
replace_example_docstring,
|
23 |
+
scale_lora_layers,
|
24 |
+
unscale_lora_layers,
|
25 |
+
)
|
26 |
+
from diffusers.utils.torch_utils import randn_tensor
|
27 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
28 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
|
29 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
EXAMPLE_DOC_STRING = """
|
35 |
+
Examples:
|
36 |
+
```py
|
37 |
+
>>> import torch
|
38 |
+
>>> from diffusers import StableDiffusionPipeline
|
39 |
+
|
40 |
+
>>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
41 |
+
>>> pipe = pipe.to("cuda")
|
42 |
+
|
43 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
44 |
+
>>> image = pipe(prompt).images[0]
|
45 |
+
```
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
50 |
+
"""
|
51 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
52 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
53 |
+
"""
|
54 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
55 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
56 |
+
# rescale the results from guidance (fixes overexposure)
|
57 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
58 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
59 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
60 |
+
return noise_cfg
|
61 |
+
|
62 |
+
|
63 |
+
def retrieve_timesteps(
|
64 |
+
scheduler,
|
65 |
+
num_inference_steps: Optional[int] = None,
|
66 |
+
device: Optional[Union[str, torch.device]] = None,
|
67 |
+
timesteps: Optional[List[int]] = None,
|
68 |
+
**kwargs,
|
69 |
+
):
|
70 |
+
"""
|
71 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
72 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
scheduler (`SchedulerMixin`):
|
76 |
+
The scheduler to get timesteps from.
|
77 |
+
num_inference_steps (`int`):
|
78 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used,
|
79 |
+
`timesteps` must be `None`.
|
80 |
+
device (`str` or `torch.device`, *optional*):
|
81 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
82 |
+
timesteps (`List[int]`, *optional*):
|
83 |
+
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
|
84 |
+
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
|
85 |
+
must be `None`.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
89 |
+
second element is the number of inference steps.
|
90 |
+
"""
|
91 |
+
if timesteps is not None:
|
92 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
93 |
+
if not accepts_timesteps:
|
94 |
+
raise ValueError(
|
95 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
96 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
97 |
+
)
|
98 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
99 |
+
timesteps = scheduler.timesteps
|
100 |
+
num_inference_steps = len(timesteps)
|
101 |
+
else:
|
102 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
103 |
+
timesteps = scheduler.timesteps
|
104 |
+
return timesteps, num_inference_steps
|
105 |
+
|
106 |
+
|
107 |
+
class StableDiffusionPipeline(
|
108 |
+
DiffusionPipeline,
|
109 |
+
StableDiffusionMixin,
|
110 |
+
TextualInversionLoaderMixin,
|
111 |
+
LoraLoaderMixin,
|
112 |
+
IPAdapterMixin,
|
113 |
+
FromSingleFileMixin,
|
114 |
+
):
|
115 |
+
r"""
|
116 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
117 |
+
|
118 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
119 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
120 |
+
|
121 |
+
The pipeline also inherits the following loading methods:
|
122 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
123 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
124 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
125 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
126 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
127 |
+
|
128 |
+
Args:
|
129 |
+
vae ([`AutoencoderKL`]):
|
130 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
131 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
132 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
133 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
134 |
+
A `CLIPTokenizer` to tokenize text.
|
135 |
+
unet ([`UNet2DConditionModel`]):
|
136 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
137 |
+
scheduler ([`SchedulerMixin`]):
|
138 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
139 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
140 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
141 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
142 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
143 |
+
about a model's potential harms.
|
144 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
145 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
146 |
+
"""
|
147 |
+
|
148 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
|
149 |
+
_optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
|
150 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
151 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
152 |
+
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
vae: AutoencoderKL,
|
156 |
+
text_encoder: CLIPTextModel,
|
157 |
+
tokenizer: CLIPTokenizer,
|
158 |
+
unet: UNet2DConditionModel,
|
159 |
+
scheduler: KarrasDiffusionSchedulers,
|
160 |
+
safety_checker: StableDiffusionSafetyChecker,
|
161 |
+
feature_extractor: CLIPImageProcessor,
|
162 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
163 |
+
requires_safety_checker: bool = True,
|
164 |
+
):
|
165 |
+
super().__init__()
|
166 |
+
|
167 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
168 |
+
deprecation_message = (
|
169 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
170 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
171 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
172 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
173 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
174 |
+
" file"
|
175 |
+
)
|
176 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
177 |
+
new_config = dict(scheduler.config)
|
178 |
+
new_config["steps_offset"] = 1
|
179 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
180 |
+
|
181 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
182 |
+
deprecation_message = (
|
183 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
184 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
185 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
186 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
187 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
188 |
+
)
|
189 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
190 |
+
new_config = dict(scheduler.config)
|
191 |
+
new_config["clip_sample"] = False
|
192 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
193 |
+
|
194 |
+
if safety_checker is None and requires_safety_checker:
|
195 |
+
logger.warning(
|
196 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
197 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
198 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
199 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
200 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
201 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
202 |
+
)
|
203 |
+
|
204 |
+
if safety_checker is not None and feature_extractor is None:
|
205 |
+
raise ValueError(
|
206 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
207 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
208 |
+
)
|
209 |
+
|
210 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
211 |
+
version.parse(unet.config._diffusers_version).base_version
|
212 |
+
) < version.parse("0.9.0.dev0")
|
213 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
214 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
215 |
+
deprecation_message = (
|
216 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
217 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
218 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
219 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
220 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
221 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
222 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
223 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
224 |
+
" the `unet/config.json` file"
|
225 |
+
)
|
226 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
227 |
+
new_config = dict(unet.config)
|
228 |
+
new_config["sample_size"] = 64
|
229 |
+
unet._internal_dict = FrozenDict(new_config)
|
230 |
+
|
231 |
+
self.register_modules(
|
232 |
+
vae=vae,
|
233 |
+
text_encoder=text_encoder,
|
234 |
+
tokenizer=tokenizer,
|
235 |
+
unet=unet,
|
236 |
+
scheduler=scheduler,
|
237 |
+
safety_checker=safety_checker,
|
238 |
+
feature_extractor=feature_extractor,
|
239 |
+
image_encoder=image_encoder,
|
240 |
+
)
|
241 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
242 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
243 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
244 |
+
|
245 |
+
def _encode_prompt(
|
246 |
+
self,
|
247 |
+
prompt,
|
248 |
+
device,
|
249 |
+
num_images_per_prompt,
|
250 |
+
do_classifier_free_guidance,
|
251 |
+
negative_prompt=None,
|
252 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
253 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
254 |
+
lora_scale: Optional[float] = None,
|
255 |
+
**kwargs,
|
256 |
+
):
|
257 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
258 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
259 |
+
|
260 |
+
prompt_embeds_tuple = self.encode_prompt(
|
261 |
+
prompt=prompt,
|
262 |
+
device=device,
|
263 |
+
num_images_per_prompt=num_images_per_prompt,
|
264 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
265 |
+
negative_prompt=negative_prompt,
|
266 |
+
prompt_embeds=prompt_embeds,
|
267 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
268 |
+
lora_scale=lora_scale,
|
269 |
+
**kwargs,
|
270 |
+
)
|
271 |
+
|
272 |
+
# concatenate for backwards comp
|
273 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
274 |
+
|
275 |
+
return prompt_embeds
|
276 |
+
|
277 |
+
def encode_prompt(
|
278 |
+
self,
|
279 |
+
prompt,
|
280 |
+
device,
|
281 |
+
num_images_per_prompt,
|
282 |
+
do_classifier_free_guidance,
|
283 |
+
negative_prompt=None,
|
284 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
285 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
286 |
+
lora_scale: Optional[float] = None,
|
287 |
+
clip_skip: Optional[int] = None,
|
288 |
+
):
|
289 |
+
r"""
|
290 |
+
Encodes the prompt into text encoder hidden states.
|
291 |
+
|
292 |
+
Args:
|
293 |
+
prompt (`str` or `List[str]`, *optional*):
|
294 |
+
prompt to be encoded
|
295 |
+
device: (`torch.device`):
|
296 |
+
torch device
|
297 |
+
num_images_per_prompt (`int`):
|
298 |
+
number of images that should be generated per prompt
|
299 |
+
do_classifier_free_guidance (`bool`):
|
300 |
+
whether to use classifier free guidance or not
|
301 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
302 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
303 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
304 |
+
less than `1`).
|
305 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
306 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
307 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
308 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
309 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
310 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
311 |
+
argument.
|
312 |
+
lora_scale (`float`, *optional*):
|
313 |
+
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
314 |
+
clip_skip (`int`, *optional*):
|
315 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
316 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
317 |
+
"""
|
318 |
+
# set lora scale so that monkey patched LoRA
|
319 |
+
# function of text encoder can correctly access it
|
320 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
321 |
+
self._lora_scale = lora_scale
|
322 |
+
|
323 |
+
# dynamically adjust the LoRA scale
|
324 |
+
if not USE_PEFT_BACKEND:
|
325 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
326 |
+
else:
|
327 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
328 |
+
|
329 |
+
if prompt is not None and isinstance(prompt, str):
|
330 |
+
batch_size = 1
|
331 |
+
elif prompt is not None and isinstance(prompt, list):
|
332 |
+
batch_size = len(prompt)
|
333 |
+
else:
|
334 |
+
batch_size = prompt_embeds.shape[0]
|
335 |
+
|
336 |
+
if prompt_embeds is None:
|
337 |
+
# textual inversion: process multi-vector tokens if necessary
|
338 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
339 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
340 |
+
|
341 |
+
text_inputs = self.tokenizer(
|
342 |
+
prompt,
|
343 |
+
padding="max_length",
|
344 |
+
max_length=self.tokenizer.model_max_length,
|
345 |
+
truncation=True,
|
346 |
+
return_tensors="pt",
|
347 |
+
)
|
348 |
+
text_input_ids = text_inputs.input_ids
|
349 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
350 |
+
|
351 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
352 |
+
text_input_ids, untruncated_ids
|
353 |
+
):
|
354 |
+
removed_text = self.tokenizer.batch_decode(
|
355 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
356 |
+
)
|
357 |
+
logger.warning(
|
358 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
359 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
360 |
+
)
|
361 |
+
|
362 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
363 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
364 |
+
else:
|
365 |
+
attention_mask = None
|
366 |
+
|
367 |
+
if clip_skip is None:
|
368 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
|
369 |
+
prompt_embeds = prompt_embeds[0]
|
370 |
+
else:
|
371 |
+
prompt_embeds = self.text_encoder(
|
372 |
+
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
|
373 |
+
)
|
374 |
+
# Access the `hidden_states` first, that contains a tuple of
|
375 |
+
# all the hidden states from the encoder layers. Then index into
|
376 |
+
# the tuple to access the hidden states from the desired layer.
|
377 |
+
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
378 |
+
# We also need to apply the final LayerNorm here to not mess with the
|
379 |
+
# representations. The `last_hidden_states` that we typically use for
|
380 |
+
# obtaining the final prompt representations passes through the LayerNorm
|
381 |
+
# layer.
|
382 |
+
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
383 |
+
|
384 |
+
if self.text_encoder is not None:
|
385 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
386 |
+
elif self.unet is not None:
|
387 |
+
prompt_embeds_dtype = self.unet.dtype
|
388 |
+
else:
|
389 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
390 |
+
|
391 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
392 |
+
|
393 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
394 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
395 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
396 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
397 |
+
|
398 |
+
# get unconditional embeddings for classifier free guidance
|
399 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
400 |
+
uncond_tokens: List[str]
|
401 |
+
if negative_prompt is None:
|
402 |
+
uncond_tokens = [""] * batch_size
|
403 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
404 |
+
raise TypeError(
|
405 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
406 |
+
f" {type(prompt)}."
|
407 |
+
)
|
408 |
+
elif isinstance(negative_prompt, str):
|
409 |
+
uncond_tokens = [negative_prompt]
|
410 |
+
elif batch_size != len(negative_prompt):
|
411 |
+
raise ValueError(
|
412 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
413 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
414 |
+
" the batch size of `prompt`."
|
415 |
+
)
|
416 |
+
else:
|
417 |
+
uncond_tokens = negative_prompt
|
418 |
+
|
419 |
+
# textual inversion: process multi-vector tokens if necessary
|
420 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
421 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
422 |
+
|
423 |
+
max_length = prompt_embeds.shape[1]
|
424 |
+
uncond_input = self.tokenizer(
|
425 |
+
uncond_tokens,
|
426 |
+
padding="max_length",
|
427 |
+
max_length=max_length,
|
428 |
+
truncation=True,
|
429 |
+
return_tensors="pt",
|
430 |
+
)
|
431 |
+
|
432 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
433 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
434 |
+
else:
|
435 |
+
attention_mask = None
|
436 |
+
|
437 |
+
negative_prompt_embeds = self.text_encoder(
|
438 |
+
uncond_input.input_ids.to(device),
|
439 |
+
attention_mask=attention_mask,
|
440 |
+
)
|
441 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
442 |
+
|
443 |
+
if do_classifier_free_guidance:
|
444 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
445 |
+
seq_len = negative_prompt_embeds.shape[1]
|
446 |
+
|
447 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
448 |
+
|
449 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
450 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
451 |
+
|
452 |
+
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
|
453 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
454 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
455 |
+
|
456 |
+
return prompt_embeds, negative_prompt_embeds
|
457 |
+
|
458 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
459 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
460 |
+
|
461 |
+
if not isinstance(image, torch.Tensor):
|
462 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
463 |
+
|
464 |
+
image = image.to(device=device, dtype=dtype)
|
465 |
+
if output_hidden_states:
|
466 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
467 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
468 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
469 |
+
torch.zeros_like(image), output_hidden_states=True
|
470 |
+
).hidden_states[-2]
|
471 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
472 |
+
num_images_per_prompt, dim=0
|
473 |
+
)
|
474 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
475 |
+
else:
|
476 |
+
image_embeds = self.image_encoder(image).image_embeds
|
477 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
478 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
479 |
+
|
480 |
+
return image_embeds, uncond_image_embeds
|
481 |
+
|
482 |
+
def prepare_ip_adapter_image_embeds(
|
483 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
484 |
+
):
|
485 |
+
if ip_adapter_image_embeds is None:
|
486 |
+
if not isinstance(ip_adapter_image, list):
|
487 |
+
ip_adapter_image = [ip_adapter_image]
|
488 |
+
|
489 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
490 |
+
raise ValueError(
|
491 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
492 |
+
)
|
493 |
+
|
494 |
+
image_embeds = []
|
495 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
496 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
497 |
+
):
|
498 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
499 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
500 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
501 |
+
)
|
502 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
503 |
+
single_negative_image_embeds = torch.stack(
|
504 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
505 |
+
)
|
506 |
+
|
507 |
+
if do_classifier_free_guidance:
|
508 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
509 |
+
single_image_embeds = single_image_embeds.to(device)
|
510 |
+
|
511 |
+
image_embeds.append(single_image_embeds)
|
512 |
+
else:
|
513 |
+
repeat_dims = [1]
|
514 |
+
image_embeds = []
|
515 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
516 |
+
if do_classifier_free_guidance:
|
517 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
518 |
+
single_image_embeds = single_image_embeds.repeat(
|
519 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
520 |
+
)
|
521 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
522 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
523 |
+
)
|
524 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
525 |
+
else:
|
526 |
+
single_image_embeds = single_image_embeds.repeat(
|
527 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
528 |
+
)
|
529 |
+
image_embeds.append(single_image_embeds)
|
530 |
+
|
531 |
+
return image_embeds
|
532 |
+
|
533 |
+
def run_safety_checker(self, image, device, dtype):
|
534 |
+
if self.safety_checker is None:
|
535 |
+
has_nsfw_concept = None
|
536 |
+
else:
|
537 |
+
if torch.is_tensor(image):
|
538 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
539 |
+
else:
|
540 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
541 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
542 |
+
image, has_nsfw_concept = self.safety_checker(
|
543 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
544 |
+
)
|
545 |
+
return image, has_nsfw_concept
|
546 |
+
|
547 |
+
def decode_latents(self, latents):
|
548 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
549 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
550 |
+
|
551 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
552 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
553 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
554 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
555 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
556 |
+
return image
|
557 |
+
|
558 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
559 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
560 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
561 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
562 |
+
# and should be between [0, 1]
|
563 |
+
|
564 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
565 |
+
extra_step_kwargs = {}
|
566 |
+
if accepts_eta:
|
567 |
+
extra_step_kwargs["eta"] = eta
|
568 |
+
|
569 |
+
# check if the scheduler accepts generator
|
570 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
571 |
+
if accepts_generator:
|
572 |
+
extra_step_kwargs["generator"] = generator
|
573 |
+
return extra_step_kwargs
|
574 |
+
|
575 |
+
def check_inputs(
|
576 |
+
self,
|
577 |
+
prompt,
|
578 |
+
height,
|
579 |
+
width,
|
580 |
+
callback_steps,
|
581 |
+
negative_prompt=None,
|
582 |
+
prompt_embeds=None,
|
583 |
+
negative_prompt_embeds=None,
|
584 |
+
ip_adapter_image=None,
|
585 |
+
ip_adapter_image_embeds=None,
|
586 |
+
callback_on_step_end_tensor_inputs=None,
|
587 |
+
):
|
588 |
+
if height % 8 != 0 or width % 8 != 0:
|
589 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
590 |
+
|
591 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
592 |
+
raise ValueError(
|
593 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
594 |
+
f" {type(callback_steps)}."
|
595 |
+
)
|
596 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
597 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
598 |
+
):
|
599 |
+
raise ValueError(
|
600 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
601 |
+
)
|
602 |
+
|
603 |
+
if prompt is not None and prompt_embeds is not None:
|
604 |
+
raise ValueError(
|
605 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
606 |
+
" only forward one of the two."
|
607 |
+
)
|
608 |
+
elif prompt is None and prompt_embeds is None:
|
609 |
+
raise ValueError(
|
610 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
611 |
+
)
|
612 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
613 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
614 |
+
|
615 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
616 |
+
raise ValueError(
|
617 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
618 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
619 |
+
)
|
620 |
+
|
621 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
622 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
623 |
+
raise ValueError(
|
624 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
625 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
626 |
+
f" {negative_prompt_embeds.shape}."
|
627 |
+
)
|
628 |
+
|
629 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
630 |
+
raise ValueError(
|
631 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
632 |
+
)
|
633 |
+
|
634 |
+
if ip_adapter_image_embeds is not None:
|
635 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
636 |
+
raise ValueError(
|
637 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
638 |
+
)
|
639 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
640 |
+
raise ValueError(
|
641 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
642 |
+
)
|
643 |
+
|
644 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
645 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
646 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
647 |
+
raise ValueError(
|
648 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
649 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
650 |
+
)
|
651 |
+
|
652 |
+
if latents is None:
|
653 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
654 |
+
else:
|
655 |
+
latents = latents.to(device)
|
656 |
+
|
657 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
658 |
+
latents = latents * self.scheduler.init_noise_sigma
|
659 |
+
return latents
|
660 |
+
|
661 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
662 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
663 |
+
"""
|
664 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
665 |
+
|
666 |
+
Args:
|
667 |
+
timesteps (`torch.Tensor`):
|
668 |
+
generate embedding vectors at these timesteps
|
669 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
670 |
+
dimension of the embeddings to generate
|
671 |
+
dtype:
|
672 |
+
data type of the generated embeddings
|
673 |
+
|
674 |
+
Returns:
|
675 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
676 |
+
"""
|
677 |
+
assert len(w.shape) == 1
|
678 |
+
w = w * 1000.0
|
679 |
+
|
680 |
+
half_dim = embedding_dim // 2
|
681 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
682 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
683 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
684 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
685 |
+
if embedding_dim % 2 == 1: # zero pad
|
686 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
687 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
688 |
+
return emb
|
689 |
+
|
690 |
+
@property
|
691 |
+
def guidance_scale(self):
|
692 |
+
return self._guidance_scale
|
693 |
+
|
694 |
+
@property
|
695 |
+
def guidance_rescale(self):
|
696 |
+
return self._guidance_rescale
|
697 |
+
|
698 |
+
@property
|
699 |
+
def clip_skip(self):
|
700 |
+
return self._clip_skip
|
701 |
+
|
702 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
703 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
704 |
+
# corresponds to doing no classifier free guidance.
|
705 |
+
@property
|
706 |
+
def do_classifier_free_guidance(self):
|
707 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
708 |
+
|
709 |
+
@property
|
710 |
+
def cross_attention_kwargs(self):
|
711 |
+
return self._cross_attention_kwargs
|
712 |
+
|
713 |
+
@property
|
714 |
+
def num_timesteps(self):
|
715 |
+
return self._num_timesteps
|
716 |
+
|
717 |
+
@property
|
718 |
+
def interrupt(self):
|
719 |
+
return self._interrupt
|
720 |
+
|
721 |
+
@torch.no_grad()
|
722 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
723 |
+
def __call__(
|
724 |
+
self,
|
725 |
+
prompt: Union[str, List[str]] = None,
|
726 |
+
height: Optional[int] = None,
|
727 |
+
width: Optional[int] = None,
|
728 |
+
num_inference_steps: int = 50,
|
729 |
+
timesteps: List[int] = None,
|
730 |
+
guidance_scale: float = 7.5,
|
731 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
732 |
+
num_images_per_prompt: Optional[int] = 1,
|
733 |
+
eta: float = 0.0,
|
734 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
735 |
+
latents: Optional[torch.FloatTensor] = None,
|
736 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
737 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
738 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
739 |
+
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
|
740 |
+
output_type: Optional[str] = "pil",
|
741 |
+
return_dict: bool = True,
|
742 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
743 |
+
guidance_rescale: float = 0.0,
|
744 |
+
clip_skip: Optional[int] = None,
|
745 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
746 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
747 |
+
audio_context: Optional[torch.FloatTensor] = None,
|
748 |
+
**kwargs,
|
749 |
+
):
|
750 |
+
r"""
|
751 |
+
The call function to the pipeline for generation.
|
752 |
+
|
753 |
+
Args:
|
754 |
+
prompt (`str` or `List[str]`, *optional*):
|
755 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
756 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
757 |
+
The height in pixels of the generated image.
|
758 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
759 |
+
The width in pixels of the generated image.
|
760 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
761 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
762 |
+
expense of slower inference.
|
763 |
+
timesteps (`List[int]`, *optional*):
|
764 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
765 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
766 |
+
passed will be used. Must be in descending order.
|
767 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
768 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
769 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
770 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
771 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
772 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
773 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
774 |
+
The number of images to generate per prompt.
|
775 |
+
eta (`float`, *optional*, defaults to 0.0):
|
776 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
777 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
778 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
779 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
780 |
+
generation deterministic.
|
781 |
+
latents (`torch.FloatTensor`, *optional*):
|
782 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
783 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
784 |
+
tensor is generated by sampling using the supplied random `generator`.
|
785 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
786 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
787 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
788 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
789 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
790 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
791 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
792 |
+
ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
|
793 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
|
794 |
+
Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
|
795 |
+
if `do_classifier_free_guidance` is set to `True`.
|
796 |
+
If not provided, embeddings are computed from the `ip_adapter_image` input argument.
|
797 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
798 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
799 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
800 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
801 |
+
plain tuple.
|
802 |
+
cross_attention_kwargs (`dict`, *optional*):
|
803 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
804 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
805 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
806 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
807 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
808 |
+
using zero terminal SNR.
|
809 |
+
clip_skip (`int`, *optional*):
|
810 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
811 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
812 |
+
callback_on_step_end (`Callable`, *optional*):
|
813 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
814 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
815 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
816 |
+
`callback_on_step_end_tensor_inputs`.
|
817 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
818 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
819 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
820 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
821 |
+
|
822 |
+
Examples:
|
823 |
+
|
824 |
+
Returns:
|
825 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
826 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
827 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
828 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
829 |
+
"not-safe-for-work" (nsfw) content.
|
830 |
+
"""
|
831 |
+
|
832 |
+
callback = kwargs.pop("callback", None)
|
833 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
834 |
+
|
835 |
+
if callback is not None:
|
836 |
+
deprecate(
|
837 |
+
"callback",
|
838 |
+
"1.0.0",
|
839 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
840 |
+
)
|
841 |
+
if callback_steps is not None:
|
842 |
+
deprecate(
|
843 |
+
"callback_steps",
|
844 |
+
"1.0.0",
|
845 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
846 |
+
)
|
847 |
+
|
848 |
+
# 0. Default height and width to unet
|
849 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
850 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
851 |
+
# to deal with lora scaling and other possible forward hooks
|
852 |
+
|
853 |
+
# 1. Check inputs. Raise error if not correct
|
854 |
+
self.check_inputs(
|
855 |
+
prompt,
|
856 |
+
height,
|
857 |
+
width,
|
858 |
+
callback_steps,
|
859 |
+
negative_prompt,
|
860 |
+
prompt_embeds,
|
861 |
+
negative_prompt_embeds,
|
862 |
+
ip_adapter_image,
|
863 |
+
ip_adapter_image_embeds,
|
864 |
+
callback_on_step_end_tensor_inputs,
|
865 |
+
)
|
866 |
+
|
867 |
+
self._guidance_scale = guidance_scale
|
868 |
+
self._guidance_rescale = guidance_rescale
|
869 |
+
self._clip_skip = clip_skip
|
870 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
871 |
+
self._interrupt = False
|
872 |
+
|
873 |
+
# 2. Define call parameters
|
874 |
+
if prompt is not None and isinstance(prompt, str):
|
875 |
+
batch_size = 1
|
876 |
+
elif prompt is not None and isinstance(prompt, list):
|
877 |
+
batch_size = len(prompt)
|
878 |
+
else:
|
879 |
+
batch_size = prompt_embeds.shape[0]
|
880 |
+
|
881 |
+
device = self._execution_device
|
882 |
+
|
883 |
+
# 3. Encode input prompt
|
884 |
+
lora_scale = (
|
885 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
886 |
+
)
|
887 |
+
|
888 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
889 |
+
prompt,
|
890 |
+
device,
|
891 |
+
num_images_per_prompt,
|
892 |
+
self.do_classifier_free_guidance,
|
893 |
+
negative_prompt,
|
894 |
+
prompt_embeds=prompt_embeds,
|
895 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
896 |
+
lora_scale=lora_scale,
|
897 |
+
clip_skip=self.clip_skip,
|
898 |
+
)
|
899 |
+
|
900 |
+
# For classifier free guidance, we need to do two forward passes.
|
901 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
902 |
+
# to avoid doing two forward passes
|
903 |
+
if self.do_classifier_free_guidance:
|
904 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
905 |
+
|
906 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
907 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
908 |
+
ip_adapter_image,
|
909 |
+
ip_adapter_image_embeds,
|
910 |
+
device,
|
911 |
+
batch_size * num_images_per_prompt,
|
912 |
+
self.do_classifier_free_guidance,
|
913 |
+
)
|
914 |
+
|
915 |
+
# 4. Prepare timesteps
|
916 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
917 |
+
|
918 |
+
# 5. Prepare latent variables
|
919 |
+
num_channels_latents = self.unet.config.in_channels
|
920 |
+
latents = self.prepare_latents(
|
921 |
+
batch_size * num_images_per_prompt,
|
922 |
+
num_channels_latents,
|
923 |
+
height,
|
924 |
+
width,
|
925 |
+
prompt_embeds.dtype,
|
926 |
+
device,
|
927 |
+
generator,
|
928 |
+
latents,
|
929 |
+
)
|
930 |
+
|
931 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
932 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
933 |
+
|
934 |
+
# 6.1 Add image embeds for IP-Adapter
|
935 |
+
added_cond_kwargs = (
|
936 |
+
{"image_embeds": image_embeds}
|
937 |
+
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
938 |
+
else None
|
939 |
+
)
|
940 |
+
|
941 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
942 |
+
timestep_cond = None
|
943 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
944 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
945 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
946 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
947 |
+
).to(device=device, dtype=latents.dtype)
|
948 |
+
|
949 |
+
# 7. Denoising loop
|
950 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
951 |
+
self._num_timesteps = len(timesteps)
|
952 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
953 |
+
for i, t in enumerate(timesteps):
|
954 |
+
if self.interrupt:
|
955 |
+
continue
|
956 |
+
|
957 |
+
# expand the latents if we are doing classifier free guidance
|
958 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
959 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
960 |
+
|
961 |
+
# predict the noise residual
|
962 |
+
noise_pred = self.unet(
|
963 |
+
latent_model_input,
|
964 |
+
t,
|
965 |
+
encoder_hidden_states=prompt_embeds,
|
966 |
+
timestep_cond=timestep_cond,
|
967 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
968 |
+
added_cond_kwargs=added_cond_kwargs,
|
969 |
+
return_dict=False,
|
970 |
+
audio_context=audio_context,
|
971 |
+
)[0]
|
972 |
+
|
973 |
+
# perform guidance
|
974 |
+
if self.do_classifier_free_guidance:
|
975 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
976 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
977 |
+
|
978 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
979 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
980 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
981 |
+
|
982 |
+
# compute the previous noisy sample x_t -> x_t-1
|
983 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
984 |
+
|
985 |
+
if callback_on_step_end is not None:
|
986 |
+
callback_kwargs = {}
|
987 |
+
for k in callback_on_step_end_tensor_inputs:
|
988 |
+
callback_kwargs[k] = locals()[k]
|
989 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
990 |
+
|
991 |
+
latents = callback_outputs.pop("latents", latents)
|
992 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
993 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
994 |
+
|
995 |
+
# call the callback, if provided
|
996 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
997 |
+
progress_bar.update()
|
998 |
+
if callback is not None and i % callback_steps == 0:
|
999 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1000 |
+
callback(step_idx, t, latents)
|
1001 |
+
|
1002 |
+
if not output_type == "latent":
|
1003 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
|
1004 |
+
0
|
1005 |
+
]
|
1006 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1007 |
+
else:
|
1008 |
+
image = latents
|
1009 |
+
has_nsfw_concept = None
|
1010 |
+
|
1011 |
+
if has_nsfw_concept is None:
|
1012 |
+
do_denormalize = [True] * image.shape[0]
|
1013 |
+
else:
|
1014 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
1015 |
+
|
1016 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
1017 |
+
|
1018 |
+
# Offload all models
|
1019 |
+
self.maybe_free_model_hooks()
|
1020 |
+
|
1021 |
+
if not return_dict:
|
1022 |
+
return (image, has_nsfw_concept)
|
1023 |
+
|
1024 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
pnp.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/MichalGeyer/pnp-diffusers/blob/main/pnp.py
|
2 |
+
|
3 |
+
import spaces
|
4 |
+
import glob
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torchvision.transforms as T
|
10 |
+
import argparse
|
11 |
+
from PIL import Image
|
12 |
+
import yaml
|
13 |
+
from tqdm import tqdm
|
14 |
+
from transformers import logging
|
15 |
+
from diffusers import DDIMScheduler, StableDiffusionPipeline
|
16 |
+
|
17 |
+
from pnp_utils import *
|
18 |
+
|
19 |
+
from unet2d_custom import UNet2DConditionModel
|
20 |
+
from pipeline_stable_diffusion_custom import StableDiffusionPipeline
|
21 |
+
from ldm.modules.encoders.audio_projector_res import Adapter
|
22 |
+
|
23 |
+
# suppress partial model loading warning
|
24 |
+
logging.set_verbosity_error()
|
25 |
+
|
26 |
+
from diffusers import logging
|
27 |
+
logging.set_verbosity_error()
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
class PNP(nn.Module):
|
32 |
+
def __init__(self, sd_version="1.4", n_timesteps=50, audio_projector_ckpt_path="ckpts/audio_projector_gh.pth",
|
33 |
+
adapter_ckpt_path="ckpts/greatest_hits.pt", device="cuda",
|
34 |
+
clap_path="CLAP/msclap",
|
35 |
+
clap_weights = "ckpts/CLAP_weights_2022.pth",
|
36 |
+
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.device = device
|
41 |
+
|
42 |
+
if sd_version == '2.1':
|
43 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
44 |
+
elif sd_version == '2.0':
|
45 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
46 |
+
elif sd_version == '1.5':
|
47 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
48 |
+
elif sd_version == '1.4':
|
49 |
+
model_key = "CompVis/stable-diffusion-v1-4"
|
50 |
+
print(f"model key is {model_key}")
|
51 |
+
else:
|
52 |
+
raise ValueError(f'Stable-diffusion version {sd_version} not supported.')
|
53 |
+
|
54 |
+
# Create SD models
|
55 |
+
print('Loading SD model')
|
56 |
+
|
57 |
+
|
58 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_key, torch_dtype=torch.float16).to("cuda")
|
59 |
+
|
60 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
61 |
+
self.unet = UNet2DConditionModel.from_pretrained(
|
62 |
+
model_id,
|
63 |
+
subfolder="unet",
|
64 |
+
use_adapter_list=[False, True, True],
|
65 |
+
low_cpu_mem_usage=False,
|
66 |
+
device_map=None
|
67 |
+
).to("cuda")
|
68 |
+
|
69 |
+
|
70 |
+
# gate_dict = torch.load(adapter_ckpt_path)
|
71 |
+
|
72 |
+
# for name, param in self.unet.named_parameters():
|
73 |
+
# if "adapter" in name:
|
74 |
+
# param.data = gate_dict[name]
|
75 |
+
#unet.to(self.device);
|
76 |
+
|
77 |
+
#pipe.unet = unet.to(self.device);
|
78 |
+
|
79 |
+
self.vae = pipe.vae
|
80 |
+
self.tokenizer = pipe.tokenizer
|
81 |
+
self.text_encoder = pipe.text_encoder
|
82 |
+
# self.unet = unet.to(self.device);
|
83 |
+
#pipe.unet
|
84 |
+
|
85 |
+
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
86 |
+
self.scheduler.set_timesteps(n_timesteps, device=self.device)
|
87 |
+
|
88 |
+
self.latents_path = "latents_forward"
|
89 |
+
self.output_path = "PNP-results/home"
|
90 |
+
|
91 |
+
import os
|
92 |
+
os.makedirs(self.output_path, exist_ok=True)
|
93 |
+
|
94 |
+
import sys
|
95 |
+
sys.path.append(clap_path)
|
96 |
+
from CLAPWrapper import CLAPWrapper
|
97 |
+
self.audio_encoder = CLAPWrapper(clap_weights, use_cuda=True)
|
98 |
+
|
99 |
+
self.audio_projector = Adapter(audio_token_count=77, transformer_layer_count=4).cuda()
|
100 |
+
#self.audio_projector_ckpt_path = audio_projector_ckpt_path
|
101 |
+
self.sr = 44100
|
102 |
+
# self.set_audio_projector(adapter_ckpt_path, audio_projector_ckpt_path)
|
103 |
+
self.text_encoder = self.text_encoder.cuda()
|
104 |
+
|
105 |
+
# self.audio_projector.load_state_dict(torch.load(audio_projector_ckpt_path))
|
106 |
+
|
107 |
+
self.audio_projector_ckpt_path = audio_projector_ckpt_path
|
108 |
+
self.adapter_ckpt_path = adapter_ckpt_path
|
109 |
+
self.changed_model = False
|
110 |
+
|
111 |
+
@spaces.GPU
|
112 |
+
def set_audio_projector(self, adapter_ckpt_path, audio_projector_ckpt_path):
|
113 |
+
|
114 |
+
print(f"SETTING MODEL TO {adapter_ckpt_path}")
|
115 |
+
gate_dict = torch.load(adapter_ckpt_path)
|
116 |
+
for name, param in self.unet.named_parameters():
|
117 |
+
if "adapter" in name:
|
118 |
+
param.data = gate_dict[name]
|
119 |
+
|
120 |
+
self.unet.eval()
|
121 |
+
self.unet = self.unet.cuda()
|
122 |
+
|
123 |
+
self.audio_projector.load_state_dict(torch.load(audio_projector_ckpt_path))
|
124 |
+
self.audio_projector.eval()
|
125 |
+
self.audio_projector = self.audio_projector.cuda()
|
126 |
+
|
127 |
+
@spaces.GPU
|
128 |
+
def set_text_embeds(self, prompt, negative_prompt=""):
|
129 |
+
self.text_encoder = self.text_encoder.cuda()
|
130 |
+
self.text_embeds = self.get_text_embeds(prompt, negative_prompt)
|
131 |
+
self.pnp_guidance_embeds = self.get_text_embeds("", "").chunk(2)[0]
|
132 |
+
|
133 |
+
@spaces.GPU
|
134 |
+
def set_audio_context(self, audio_path):
|
135 |
+
|
136 |
+
self.audio_projector = self.audio_projector.cuda()
|
137 |
+
self.audio_encoder.clap.audio_encoder = self.audio_encoder.clap.audio_encoder.to("cuda")
|
138 |
+
audio_emb, _ = self.audio_encoder.get_audio_embeddings([audio_path], resample = self.sr)
|
139 |
+
|
140 |
+
dtpye_w = self.audio_projector.audio_emb_projection[0].weight.dtype
|
141 |
+
device_w = self.audio_projector.audio_emb_projection[0].weight.device
|
142 |
+
|
143 |
+
audio_emb = audio_emb.cuda()
|
144 |
+
audio_proj = self.audio_projector(audio_emb.unsqueeze(1))
|
145 |
+
|
146 |
+
audio_emb = torch.zeros(1, 1024).cuda()
|
147 |
+
audio_uc = self.audio_projector(audio_emb.unsqueeze(1))
|
148 |
+
|
149 |
+
self.audio_context = torch.cat([audio_uc, audio_uc, audio_proj]).cuda()
|
150 |
+
|
151 |
+
|
152 |
+
@torch.no_grad()
|
153 |
+
@spaces.GPU
|
154 |
+
def get_text_embeds(self, prompt, negative_prompt, batch_size=1):
|
155 |
+
# Tokenize text and get embeddings
|
156 |
+
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
157 |
+
truncation=True, return_tensors='pt')
|
158 |
+
input_ids = text_input.input_ids.to("cuda")
|
159 |
+
text_embeddings = self.text_encoder(input_ids)[0]
|
160 |
+
|
161 |
+
# Do the same for unconditional embeddings
|
162 |
+
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
163 |
+
return_tensors='pt')
|
164 |
+
|
165 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
166 |
+
|
167 |
+
# Cat for final embeddings
|
168 |
+
text_embeddings = torch.cat([uncond_embeddings] * batch_size + [text_embeddings] * batch_size)
|
169 |
+
return text_embeddings
|
170 |
+
|
171 |
+
@torch.no_grad()
|
172 |
+
@spaces.GPU
|
173 |
+
def decode_latent(self, latent):
|
174 |
+
self.vae = self.vae.cuda()
|
175 |
+
with torch.autocast(device_type='cuda', dtype=torch.float32):
|
176 |
+
latent = 1 / 0.18215 * latent
|
177 |
+
img = self.vae.decode(latent).sample
|
178 |
+
img = (img / 2 + 0.5).clamp(0, 1)
|
179 |
+
return img
|
180 |
+
|
181 |
+
#@torch.autocast(device_type='cuda', dtype=torch.float32)
|
182 |
+
@spaces.GPU
|
183 |
+
def get_data(self, image_path):
|
184 |
+
self.image_path = image_path
|
185 |
+
# load image
|
186 |
+
image = Image.open(image_path).convert('RGB')
|
187 |
+
image = image.resize((512, 512), resample=Image.Resampling.LANCZOS)
|
188 |
+
image = T.ToTensor()(image).to(self.device)
|
189 |
+
|
190 |
+
# get noise
|
191 |
+
latents_path = os.path.join(self.latents_path, f'noisy_latents_{self.scheduler.timesteps[0]}.pt')
|
192 |
+
noisy_latent = torch.load(latents_path).to(self.device)
|
193 |
+
return image, noisy_latent
|
194 |
+
|
195 |
+
@torch.no_grad()
|
196 |
+
@spaces.GPU
|
197 |
+
def denoise_step(self, x, t, guidance_scale):
|
198 |
+
# register the time step and features in pnp injection modules
|
199 |
+
source_latents = load_source_latents_t(t, os.path.join(self.latents_path))
|
200 |
+
latent_model_input = torch.cat([source_latents] + ([x] * 2))
|
201 |
+
|
202 |
+
register_time(self, t.item())
|
203 |
+
|
204 |
+
# compute text embeddings
|
205 |
+
text_embed_input = torch.cat([self.pnp_guidance_embeds, self.text_embeds], dim=0)
|
206 |
+
|
207 |
+
# apply the denoising network
|
208 |
+
noise_pred = self.unet(latent_model_input, t,
|
209 |
+
encoder_hidden_states=text_embed_input,
|
210 |
+
audio_context=self.audio_context)['sample']
|
211 |
+
|
212 |
+
# perform guidance
|
213 |
+
_, noise_pred_uncond, noise_pred_cond = noise_pred.chunk(3)
|
214 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
215 |
+
|
216 |
+
# compute the denoising step with the reference model
|
217 |
+
denoised_latent = self.scheduler.step(noise_pred, t, x)['prev_sample']
|
218 |
+
return denoised_latent
|
219 |
+
|
220 |
+
@spaces.GPU
|
221 |
+
def init_pnp(self, conv_injection_t, qk_injection_t):
|
222 |
+
self.qk_injection_timesteps = self.scheduler.timesteps[:qk_injection_t] if qk_injection_t >= 0 else []
|
223 |
+
self.conv_injection_timesteps = self.scheduler.timesteps[:conv_injection_t] if conv_injection_t >= 0 else []
|
224 |
+
register_attention_control_efficient(self, self.qk_injection_timesteps)
|
225 |
+
register_conv_control_efficient(self, self.conv_injection_timesteps)
|
226 |
+
|
227 |
+
@spaces.GPU
|
228 |
+
def run_pnp(self, n_timesteps=50, pnp_f_t=0.5, pnp_attn_t=0.5,
|
229 |
+
prompt="", negative_prompt="",
|
230 |
+
audio_path="", image_path="",
|
231 |
+
cfg_scale=5):
|
232 |
+
|
233 |
+
# if not self.changed_model:
|
234 |
+
# self.set_audio_projector(self.adapter_ckpt_path, self.audio_projector_ckpt_path)
|
235 |
+
|
236 |
+
self.audio_projector = self.audio_projector.cuda()
|
237 |
+
|
238 |
+
self.set_text_embeds(prompt)
|
239 |
+
self.set_audio_context(audio_path=audio_path)
|
240 |
+
self.image, self.eps = self.get_data(image_path=image_path)
|
241 |
+
|
242 |
+
self.unet = self.unet.cuda()
|
243 |
+
|
244 |
+
pnp_f_t = int(n_timesteps * pnp_f_t)
|
245 |
+
pnp_attn_t = int(n_timesteps * pnp_attn_t)
|
246 |
+
self.init_pnp(conv_injection_t=pnp_f_t, qk_injection_t=pnp_attn_t)
|
247 |
+
|
248 |
+
edited_img = self.sample_loop(self.eps, cfg_scale=cfg_scale)
|
249 |
+
|
250 |
+
return T.ToPILImage()(edited_img[0])
|
251 |
+
|
252 |
+
@spaces.GPU
|
253 |
+
def sample_loop(self, x, cfg_scale):
|
254 |
+
with torch.autocast(device_type='cuda', dtype=torch.float32):
|
255 |
+
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="Sampling")):
|
256 |
+
x = self.denoise_step(x, t, cfg_scale)
|
257 |
+
|
258 |
+
decoded_latent = self.decode_latent(x)
|
259 |
+
T.ToPILImage()(decoded_latent[0]).save(f'{self.output_path}/output.png')
|
260 |
+
|
261 |
+
return decoded_latent
|
262 |
+
|
263 |
+
|
264 |
+
if __name__ == '__main__':
|
265 |
+
parser = argparse.ArgumentParser()
|
266 |
+
parser.add_argument('--config_path', type=str, default='config_pnp.yaml')
|
267 |
+
|
268 |
+
opt = parser.parse_args()
|
269 |
+
with open(opt.config_path, "r") as f:
|
270 |
+
config = yaml.safe_load(f)
|
271 |
+
os.makedirs(config["output_path"], exist_ok=True)
|
272 |
+
|
273 |
+
with open(os.path.join(config["output_path"], "config.yaml"), "w") as f:
|
274 |
+
yaml.dump(config, f)
|
275 |
+
|
276 |
+
seed_everything(config["seed"])
|
277 |
+
print(config)
|
278 |
+
pnp = PNP(config)
|
279 |
+
temp = pnp.run_pnp()
|
pnp_utils.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/MichalGeyer/pnp-diffusers/blob/main/pnp_utils.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
def seed_everything(seed):
|
9 |
+
torch.manual_seed(seed)
|
10 |
+
torch.cuda.manual_seed(seed)
|
11 |
+
random.seed(seed)
|
12 |
+
np.random.seed(seed)
|
13 |
+
|
14 |
+
def register_time(model, t):
|
15 |
+
|
16 |
+
|
17 |
+
conv_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
18 |
+
for res in conv_res_dict:
|
19 |
+
for block in conv_res_dict[res]:
|
20 |
+
conv_module = model.unet.up_blocks[res].resnets[block]
|
21 |
+
setattr(conv_module, 't', t)
|
22 |
+
|
23 |
+
down_res_dict = {0: [0, 1], 1: [0, 1], 2: [0, 1]}
|
24 |
+
up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
|
25 |
+
for res in up_res_dict:
|
26 |
+
for block in up_res_dict[res]:
|
27 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
28 |
+
setattr(module, 't', t)
|
29 |
+
for res in down_res_dict:
|
30 |
+
for block in down_res_dict[res]:
|
31 |
+
module = model.unet.down_blocks[res].attentions[block].transformer_blocks[0].attn1
|
32 |
+
setattr(module, 't', t)
|
33 |
+
module = model.unet.mid_block.attentions[0].transformer_blocks[0].attn1
|
34 |
+
setattr(module, 't', t)
|
35 |
+
|
36 |
+
|
37 |
+
def load_source_latents_t(t, latents_path):
|
38 |
+
latents_t_path = os.path.join(latents_path, f'noisy_latents_{t}.pt')
|
39 |
+
assert os.path.exists(latents_t_path), f'Missing latents at t {t} path {latents_t_path}'
|
40 |
+
latents = torch.load(latents_t_path)
|
41 |
+
return latents
|
42 |
+
|
43 |
+
def register_attention_control_efficient(model, injection_schedule):
|
44 |
+
def sa_forward(self):
|
45 |
+
to_out = self.to_out
|
46 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
47 |
+
to_out = self.to_out[0]
|
48 |
+
else:
|
49 |
+
to_out = self.to_out
|
50 |
+
|
51 |
+
def forward(x, encoder_hidden_states=None, attention_mask=None):
|
52 |
+
batch_size, sequence_length, dim = x.shape
|
53 |
+
h = self.heads
|
54 |
+
|
55 |
+
is_cross = encoder_hidden_states is not None
|
56 |
+
encoder_hidden_states = encoder_hidden_states if is_cross else x
|
57 |
+
if not is_cross and self.injection_schedule is not None and (
|
58 |
+
self.t in self.injection_schedule or self.t == 1000):
|
59 |
+
q = self.to_q(x)
|
60 |
+
k = self.to_k(encoder_hidden_states)
|
61 |
+
|
62 |
+
source_batch_size = int(q.shape[0] // 3)
|
63 |
+
# inject unconditional
|
64 |
+
q[source_batch_size:2 * source_batch_size] = q[:source_batch_size]
|
65 |
+
k[source_batch_size:2 * source_batch_size] = k[:source_batch_size]
|
66 |
+
# inject conditional
|
67 |
+
q[2 * source_batch_size:] = q[:source_batch_size]
|
68 |
+
k[2 * source_batch_size:] = k[:source_batch_size]
|
69 |
+
|
70 |
+
q = self.head_to_batch_dim(q)
|
71 |
+
k = self.head_to_batch_dim(k)
|
72 |
+
else:
|
73 |
+
q = self.to_q(x)
|
74 |
+
k = self.to_k(encoder_hidden_states)
|
75 |
+
q = self.head_to_batch_dim(q)
|
76 |
+
k = self.head_to_batch_dim(k)
|
77 |
+
|
78 |
+
v = self.to_v(encoder_hidden_states)
|
79 |
+
v = self.head_to_batch_dim(v)
|
80 |
+
|
81 |
+
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
|
82 |
+
|
83 |
+
if attention_mask is not None:
|
84 |
+
attention_mask = attention_mask.reshape(batch_size, -1)
|
85 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
86 |
+
attention_mask = attention_mask[:, None, :].repeat(h, 1, 1)
|
87 |
+
sim.masked_fill_(~attention_mask, max_neg_value)
|
88 |
+
|
89 |
+
# attention, what we cannot get enough of
|
90 |
+
attn = sim.softmax(dim=-1)
|
91 |
+
out = torch.einsum("b i j, b j d -> b i d", attn, v)
|
92 |
+
out = self.batch_to_head_dim(out)
|
93 |
+
|
94 |
+
return to_out(out)
|
95 |
+
|
96 |
+
return forward
|
97 |
+
|
98 |
+
|
99 |
+
res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]} # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
|
100 |
+
for res in res_dict:
|
101 |
+
for block in res_dict[res]:
|
102 |
+
module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
|
103 |
+
module.forward = sa_forward(module)
|
104 |
+
setattr(module, 'injection_schedule', injection_schedule)
|
105 |
+
|
106 |
+
|
107 |
+
def register_conv_control_efficient(model, injection_schedule):
|
108 |
+
def conv_forward(self):
|
109 |
+
def forward(input_tensor, temb):
|
110 |
+
hidden_states = input_tensor
|
111 |
+
|
112 |
+
hidden_states = self.norm1(hidden_states)
|
113 |
+
hidden_states = self.nonlinearity(hidden_states)
|
114 |
+
|
115 |
+
if self.upsample is not None:
|
116 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
117 |
+
if hidden_states.shape[0] >= 64:
|
118 |
+
input_tensor = input_tensor.contiguous()
|
119 |
+
hidden_states = hidden_states.contiguous()
|
120 |
+
input_tensor = self.upsample(input_tensor)
|
121 |
+
hidden_states = self.upsample(hidden_states)
|
122 |
+
elif self.downsample is not None:
|
123 |
+
input_tensor = self.downsample(input_tensor)
|
124 |
+
hidden_states = self.downsample(hidden_states)
|
125 |
+
|
126 |
+
hidden_states = self.conv1(hidden_states)
|
127 |
+
|
128 |
+
if temb is not None:
|
129 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
|
130 |
+
|
131 |
+
if temb is not None and self.time_embedding_norm == "default":
|
132 |
+
hidden_states = hidden_states + temb
|
133 |
+
|
134 |
+
hidden_states = self.norm2(hidden_states)
|
135 |
+
|
136 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
137 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
138 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
139 |
+
|
140 |
+
hidden_states = self.nonlinearity(hidden_states)
|
141 |
+
|
142 |
+
hidden_states = self.dropout(hidden_states)
|
143 |
+
hidden_states = self.conv2(hidden_states)
|
144 |
+
if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
|
145 |
+
source_batch_size = int(hidden_states.shape[0] // 3)
|
146 |
+
# inject unconditional
|
147 |
+
hidden_states[source_batch_size:2 * source_batch_size] = hidden_states[:source_batch_size]
|
148 |
+
# inject conditional
|
149 |
+
hidden_states[2 * source_batch_size:] = hidden_states[:source_batch_size]
|
150 |
+
|
151 |
+
if self.conv_shortcut is not None:
|
152 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
153 |
+
|
154 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
155 |
+
|
156 |
+
return output_tensor
|
157 |
+
|
158 |
+
return forward
|
159 |
+
|
160 |
+
conv_res_dict = {1: [1, 2]}
|
161 |
+
|
162 |
+
for res in conv_res_dict:
|
163 |
+
for block in conv_res_dict[res]:
|
164 |
+
conv_module = model.unet.up_blocks[res].resnets[block]
|
165 |
+
conv_module.forward = conv_forward(conv_module)
|
166 |
+
setattr(conv_module, 'injection_schedule', injection_schedule)
|
167 |
+
|
168 |
+
|
169 |
+
|
preprocess.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/MichalGeyer/pnp-diffusers/blob/main/preprocess.py
|
2 |
+
|
3 |
+
from transformers import CLIPTextModel, CLIPTokenizer, logging
|
4 |
+
from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler
|
5 |
+
|
6 |
+
# suppress partial model loading warning
|
7 |
+
logging.set_verbosity_error()
|
8 |
+
|
9 |
+
import os
|
10 |
+
from PIL import Image
|
11 |
+
from tqdm import tqdm, trange
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import argparse
|
15 |
+
from pathlib import Path
|
16 |
+
from pnp_utils import *
|
17 |
+
import torchvision.transforms as T
|
18 |
+
|
19 |
+
|
20 |
+
def get_timesteps(scheduler, num_inference_steps, strength, device):
|
21 |
+
# get the original timestep using init_timestep
|
22 |
+
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
23 |
+
|
24 |
+
t_start = max(num_inference_steps - init_timestep, 0)
|
25 |
+
timesteps = scheduler.timesteps[t_start:]
|
26 |
+
|
27 |
+
return timesteps, num_inference_steps - t_start
|
28 |
+
|
29 |
+
|
30 |
+
class Preprocess(nn.Module):
|
31 |
+
def __init__(self, device, sd_version='2.0', hf_key=None):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
self.device = device
|
35 |
+
self.sd_version = sd_version
|
36 |
+
self.use_depth = False
|
37 |
+
|
38 |
+
print(f'[INFO] loading stable diffusion...')
|
39 |
+
if hf_key is not None:
|
40 |
+
print(f'[INFO] using hugging face custom model key: {hf_key}')
|
41 |
+
model_key = hf_key
|
42 |
+
elif self.sd_version == '2.1':
|
43 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
44 |
+
elif self.sd_version == '2.0':
|
45 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
46 |
+
elif self.sd_version == '1.5':
|
47 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
48 |
+
elif self.sd_version == 'depth':
|
49 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
50 |
+
self.use_depth = True
|
51 |
+
elif self.sd_version == '1.4':
|
52 |
+
model_key = "CompVis/stable-diffusion-v1-4"
|
53 |
+
|
54 |
+
else:
|
55 |
+
raise ValueError(f'Stable-diffusion version {self.sd_version} not supported.')
|
56 |
+
|
57 |
+
# Create model
|
58 |
+
self.vae = AutoencoderKL.from_pretrained(model_key, subfolder="vae", revision="fp16",
|
59 |
+
torch_dtype=torch.float16).to(self.device)
|
60 |
+
self.tokenizer = CLIPTokenizer.from_pretrained(model_key, subfolder="tokenizer")
|
61 |
+
self.text_encoder = CLIPTextModel.from_pretrained(model_key, subfolder="text_encoder", revision="fp16",
|
62 |
+
torch_dtype=torch.float16).to(self.device)
|
63 |
+
self.unet = UNet2DConditionModel.from_pretrained(model_key, subfolder="unet", revision="fp16",
|
64 |
+
torch_dtype=torch.float16).to(self.device)
|
65 |
+
self.scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
66 |
+
print(f'[INFO] loaded stable diffusion!')
|
67 |
+
|
68 |
+
self.inversion_func = self.ddim_inversion
|
69 |
+
|
70 |
+
@torch.no_grad()
|
71 |
+
def get_text_embeds(self, prompt, negative_prompt, device="cuda"):
|
72 |
+
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
73 |
+
truncation=True, return_tensors='pt')
|
74 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0]
|
75 |
+
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length,
|
76 |
+
return_tensors='pt')
|
77 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(device))[0]
|
78 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
79 |
+
return text_embeddings
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def decode_latents(self, latents):
|
83 |
+
with torch.autocast(device_type='cuda', dtype=torch.float32):
|
84 |
+
latents = 1 / 0.18215 * latents
|
85 |
+
imgs = self.vae.decode(latents).sample
|
86 |
+
imgs = (imgs / 2 + 0.5).clamp(0, 1)
|
87 |
+
return imgs
|
88 |
+
|
89 |
+
def load_img(self, image_path):
|
90 |
+
image_pil = T.Resize(512)(Image.open(image_path).convert("RGB"))
|
91 |
+
image = T.ToTensor()(image_pil).unsqueeze(0).to(self.device)
|
92 |
+
return image
|
93 |
+
|
94 |
+
@torch.no_grad()
|
95 |
+
def encode_imgs(self, imgs):
|
96 |
+
with torch.autocast(device_type='cuda', dtype=torch.float32):
|
97 |
+
imgs = 2 * imgs - 1
|
98 |
+
posterior = self.vae.encode(imgs).latent_dist
|
99 |
+
latents = posterior.mean * 0.18215
|
100 |
+
return latents
|
101 |
+
|
102 |
+
@torch.no_grad()
|
103 |
+
def ddim_inversion(self, cond, latent, save_path, save_latents=True,
|
104 |
+
timesteps_to_save=None):
|
105 |
+
timesteps = reversed(self.scheduler.timesteps)
|
106 |
+
with torch.autocast(device_type='cuda', dtype=torch.float32):
|
107 |
+
for i, t in enumerate(tqdm(timesteps)):
|
108 |
+
cond_batch = cond.repeat(latent.shape[0], 1, 1)
|
109 |
+
|
110 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
111 |
+
alpha_prod_t_prev = (
|
112 |
+
self.scheduler.alphas_cumprod[timesteps[i - 1]]
|
113 |
+
if i > 0 else self.scheduler.final_alpha_cumprod
|
114 |
+
)
|
115 |
+
|
116 |
+
mu = alpha_prod_t ** 0.5
|
117 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
118 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
119 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
120 |
+
|
121 |
+
eps = self.unet(latent, t, encoder_hidden_states=cond_batch).sample
|
122 |
+
|
123 |
+
pred_x0 = (latent - sigma_prev * eps) / mu_prev
|
124 |
+
latent = mu * pred_x0 + sigma * eps
|
125 |
+
if save_latents:
|
126 |
+
torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
|
127 |
+
torch.save(latent, os.path.join(save_path, f'noisy_latents_{t}.pt'))
|
128 |
+
return latent
|
129 |
+
|
130 |
+
@torch.no_grad()
|
131 |
+
def ddim_sample(self, x, cond, save_path, save_latents=False, timesteps_to_save=None):
|
132 |
+
timesteps = self.scheduler.timesteps
|
133 |
+
with torch.autocast(device_type='cuda', dtype=torch.float32):
|
134 |
+
for i, t in enumerate(tqdm(timesteps)):
|
135 |
+
cond_batch = cond.repeat(x.shape[0], 1, 1)
|
136 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[t]
|
137 |
+
alpha_prod_t_prev = (
|
138 |
+
self.scheduler.alphas_cumprod[timesteps[i + 1]]
|
139 |
+
if i < len(timesteps) - 1
|
140 |
+
else self.scheduler.final_alpha_cumprod
|
141 |
+
)
|
142 |
+
mu = alpha_prod_t ** 0.5
|
143 |
+
sigma = (1 - alpha_prod_t) ** 0.5
|
144 |
+
mu_prev = alpha_prod_t_prev ** 0.5
|
145 |
+
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5
|
146 |
+
|
147 |
+
eps = self.unet(x, t, encoder_hidden_states=cond_batch).sample
|
148 |
+
|
149 |
+
pred_x0 = (x - sigma * eps) / mu
|
150 |
+
x = mu_prev * pred_x0 + sigma_prev * eps
|
151 |
+
|
152 |
+
if save_latents:
|
153 |
+
torch.save(x, os.path.join(save_path, f'noisy_latents_{t}.pt'))
|
154 |
+
return x
|
155 |
+
|
156 |
+
@torch.no_grad()
|
157 |
+
def extract_latents(self, num_steps, data_path, save_path, timesteps_to_save,
|
158 |
+
inversion_prompt='', extract_reverse=False):
|
159 |
+
self.scheduler.set_timesteps(num_steps)
|
160 |
+
|
161 |
+
cond = self.get_text_embeds(inversion_prompt, "")[1].unsqueeze(0)
|
162 |
+
image = self.load_img(data_path)
|
163 |
+
latent = self.encode_imgs(image)
|
164 |
+
|
165 |
+
inverted_x = self.inversion_func(cond, latent, save_path, save_latents=not extract_reverse,
|
166 |
+
timesteps_to_save=timesteps_to_save)
|
167 |
+
latent_reconstruction = self.ddim_sample(inverted_x, cond, save_path, save_latents=extract_reverse,
|
168 |
+
timesteps_to_save=timesteps_to_save)
|
169 |
+
rgb_reconstruction = self.decode_latents(latent_reconstruction)
|
170 |
+
|
171 |
+
return rgb_reconstruction # , latent_reconstruction
|
172 |
+
|
173 |
+
|
174 |
+
def run(opt):
|
175 |
+
device = 'cuda'
|
176 |
+
# timesteps to save
|
177 |
+
if opt.sd_version == '2.1':
|
178 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
179 |
+
elif opt.sd_version == '2.0':
|
180 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
181 |
+
elif opt.sd_version == '1.5':
|
182 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
183 |
+
elif opt.sd_version == 'depth':
|
184 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
185 |
+
elif opt.sd_version == '1.4':
|
186 |
+
model_key = "CompVis/stable-diffusion-v1-4"
|
187 |
+
|
188 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
189 |
+
toy_scheduler.set_timesteps(opt.save_steps)
|
190 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=opt.save_steps,
|
191 |
+
strength=1.0,
|
192 |
+
device=device)
|
193 |
+
|
194 |
+
seed_everything(opt.seed)
|
195 |
+
|
196 |
+
extraction_path_prefix = "_reverse" if opt.extract_reverse else "_forward"
|
197 |
+
save_path = os.path.join(opt.save_dir + extraction_path_prefix, os.path.splitext(os.path.basename(opt.data_path))[0])
|
198 |
+
os.makedirs(save_path, exist_ok=True)
|
199 |
+
|
200 |
+
model = Preprocess(device, sd_version=opt.sd_version, hf_key=None)
|
201 |
+
recon_image = model.extract_latents(data_path=opt.data_path,
|
202 |
+
num_steps=opt.steps,
|
203 |
+
save_path=save_path,
|
204 |
+
timesteps_to_save=timesteps_to_save,
|
205 |
+
inversion_prompt=opt.inversion_prompt,
|
206 |
+
extract_reverse=opt.extract_reverse)
|
207 |
+
|
208 |
+
T.ToPILImage()(recon_image[0]).save(os.path.join(save_path, f'recon.jpg'))
|
209 |
+
|
210 |
+
|
211 |
+
if __name__ == "__main__":
|
212 |
+
device = 'cuda'
|
213 |
+
parser = argparse.ArgumentParser()
|
214 |
+
parser.add_argument('--data_path', type=str,
|
215 |
+
default='data/source_2.png')
|
216 |
+
parser.add_argument('--save_dir', type=str, default='latents')
|
217 |
+
parser.add_argument('--sd_version', type=str, default='1.4', choices=['1.5', '2.0', '2.1', '1.4'],
|
218 |
+
help="stable diffusion version")
|
219 |
+
|
220 |
+
parser.add_argument('--seed', type=int, default=1)
|
221 |
+
parser.add_argument('--steps', type=int, default=50)
|
222 |
+
parser.add_argument('--save-steps', type=int, default=1000)
|
223 |
+
parser.add_argument('--inversion_prompt', type=str, default='')
|
224 |
+
parser.add_argument('--extract-reverse', default=False, action='store_true', help="extract features during the denoising process")
|
225 |
+
|
226 |
+
opt = parser.parse_args()
|
227 |
+
run(opt)
|
228 |
+
|
transformer_2d_custom.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Dict, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.utils import BaseOutput, deprecate, is_torch_version, logging
|
12 |
+
from attention_custom import BasicTransformerBlock
|
13 |
+
|
14 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings, PatchEmbed, PixArtAlphaTextProjection
|
15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
16 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
17 |
+
|
18 |
+
|
19 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class Transformer2DModelOutput(BaseOutput):
|
23 |
+
"""
|
24 |
+
The output of [`Transformer2DModel`].
|
25 |
+
|
26 |
+
Args:
|
27 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
28 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
29 |
+
distributions for the unnoised latent pixels.
|
30 |
+
"""
|
31 |
+
|
32 |
+
sample: torch.FloatTensor
|
33 |
+
|
34 |
+
|
35 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
36 |
+
"""
|
37 |
+
A 2D Transformer model for image-like data.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
41 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
42 |
+
in_channels (`int`, *optional*):
|
43 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
44 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
45 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
46 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
47 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
48 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
49 |
+
num_vector_embeds (`int`, *optional*):
|
50 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
51 |
+
Includes the class for the masked latent pixel.
|
52 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
53 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
54 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
55 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
56 |
+
added to the hidden states.
|
57 |
+
|
58 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
59 |
+
attention_bias (`bool`, *optional*):
|
60 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
61 |
+
"""
|
62 |
+
|
63 |
+
_supports_gradient_checkpointing = True
|
64 |
+
|
65 |
+
@register_to_config
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
num_attention_heads: int = 16,
|
69 |
+
attention_head_dim: int = 88,
|
70 |
+
in_channels: Optional[int] = None,
|
71 |
+
out_channels: Optional[int] = None,
|
72 |
+
num_layers: int = 1,
|
73 |
+
dropout: float = 0.0,
|
74 |
+
norm_num_groups: int = 32,
|
75 |
+
cross_attention_dim: Optional[int] = None,
|
76 |
+
attention_bias: bool = False,
|
77 |
+
sample_size: Optional[int] = None,
|
78 |
+
num_vector_embeds: Optional[int] = None,
|
79 |
+
patch_size: Optional[int] = None,
|
80 |
+
activation_fn: str = "geglu",
|
81 |
+
num_embeds_ada_norm: Optional[int] = None,
|
82 |
+
use_linear_projection: bool = False,
|
83 |
+
only_cross_attention: bool = False,
|
84 |
+
double_self_attention: bool = False,
|
85 |
+
upcast_attention: bool = False,
|
86 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
87 |
+
norm_elementwise_affine: bool = True,
|
88 |
+
norm_eps: float = 1e-5,
|
89 |
+
attention_type: str = "default",
|
90 |
+
caption_channels: int = None,
|
91 |
+
interpolation_scale: float = None,
|
92 |
+
use_adapter: bool = False,
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
if patch_size is not None:
|
96 |
+
if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]:
|
97 |
+
raise NotImplementedError(
|
98 |
+
f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'."
|
99 |
+
)
|
100 |
+
elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None:
|
101 |
+
raise ValueError(
|
102 |
+
f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None."
|
103 |
+
)
|
104 |
+
|
105 |
+
self.use_linear_projection = use_linear_projection
|
106 |
+
self.num_attention_heads = num_attention_heads
|
107 |
+
self.attention_head_dim = attention_head_dim
|
108 |
+
inner_dim = num_attention_heads * attention_head_dim
|
109 |
+
|
110 |
+
conv_cls = nn.Conv2d
|
111 |
+
linear_cls = nn.Linear
|
112 |
+
|
113 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
114 |
+
# Define whether input is continuous or discrete depending on configuration
|
115 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
116 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
117 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
118 |
+
|
119 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
120 |
+
deprecation_message = (
|
121 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
122 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
123 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
124 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
125 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
126 |
+
)
|
127 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
128 |
+
norm_type = "ada_norm"
|
129 |
+
|
130 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
131 |
+
raise ValueError(
|
132 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
133 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
134 |
+
)
|
135 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
136 |
+
raise ValueError(
|
137 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
138 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
139 |
+
)
|
140 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
141 |
+
raise ValueError(
|
142 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
143 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
144 |
+
)
|
145 |
+
|
146 |
+
# 2. Define input layers
|
147 |
+
if self.is_input_continuous:
|
148 |
+
self.in_channels = in_channels
|
149 |
+
|
150 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
151 |
+
if use_linear_projection:
|
152 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
153 |
+
else:
|
154 |
+
self.proj_in = conv_cls(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
155 |
+
elif self.is_input_vectorized:
|
156 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
157 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
158 |
+
|
159 |
+
self.height = sample_size
|
160 |
+
self.width = sample_size
|
161 |
+
self.num_vector_embeds = num_vector_embeds
|
162 |
+
self.num_latent_pixels = self.height * self.width
|
163 |
+
|
164 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
165 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
166 |
+
)
|
167 |
+
elif self.is_input_patches:
|
168 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
169 |
+
|
170 |
+
self.height = sample_size
|
171 |
+
self.width = sample_size
|
172 |
+
|
173 |
+
self.patch_size = patch_size
|
174 |
+
interpolation_scale = (
|
175 |
+
interpolation_scale if interpolation_scale is not None else max(self.config.sample_size // 64, 1)
|
176 |
+
)
|
177 |
+
self.pos_embed = PatchEmbed(
|
178 |
+
height=sample_size,
|
179 |
+
width=sample_size,
|
180 |
+
patch_size=patch_size,
|
181 |
+
in_channels=in_channels,
|
182 |
+
embed_dim=inner_dim,
|
183 |
+
interpolation_scale=interpolation_scale,
|
184 |
+
)
|
185 |
+
|
186 |
+
# 3. Define transformers blocks
|
187 |
+
self.transformer_blocks = nn.ModuleList(
|
188 |
+
[
|
189 |
+
BasicTransformerBlock(
|
190 |
+
inner_dim,
|
191 |
+
num_attention_heads,
|
192 |
+
attention_head_dim,
|
193 |
+
dropout=dropout,
|
194 |
+
cross_attention_dim=cross_attention_dim,
|
195 |
+
activation_fn=activation_fn,
|
196 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
197 |
+
attention_bias=attention_bias,
|
198 |
+
only_cross_attention=only_cross_attention,
|
199 |
+
double_self_attention=double_self_attention,
|
200 |
+
upcast_attention=upcast_attention,
|
201 |
+
norm_type=norm_type,
|
202 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
203 |
+
norm_eps=norm_eps,
|
204 |
+
attention_type=attention_type,
|
205 |
+
use_adapter=use_adapter,
|
206 |
+
)
|
207 |
+
for d in range(num_layers)
|
208 |
+
]
|
209 |
+
)
|
210 |
+
|
211 |
+
# 4. Define output layers
|
212 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
213 |
+
if self.is_input_continuous:
|
214 |
+
# TODO: should use out_channels for continuous projections
|
215 |
+
if use_linear_projection:
|
216 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
217 |
+
else:
|
218 |
+
self.proj_out = conv_cls(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
219 |
+
elif self.is_input_vectorized:
|
220 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
221 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
222 |
+
elif self.is_input_patches and norm_type != "ada_norm_single":
|
223 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
224 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
225 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
226 |
+
elif self.is_input_patches and norm_type == "ada_norm_single":
|
227 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
228 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
|
229 |
+
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
230 |
+
|
231 |
+
# 5. PixArt-Alpha blocks.
|
232 |
+
self.adaln_single = None
|
233 |
+
self.use_additional_conditions = False
|
234 |
+
if norm_type == "ada_norm_single":
|
235 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
236 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
237 |
+
# additional conditions until we find better name
|
238 |
+
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
|
239 |
+
|
240 |
+
self.caption_projection = None
|
241 |
+
if caption_channels is not None:
|
242 |
+
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
|
243 |
+
|
244 |
+
self.gradient_checkpointing = False
|
245 |
+
|
246 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
247 |
+
if hasattr(module, "gradient_checkpointing"):
|
248 |
+
module.gradient_checkpointing = value
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self,
|
252 |
+
hidden_states: torch.Tensor,
|
253 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
254 |
+
timestep: Optional[torch.LongTensor] = None,
|
255 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
256 |
+
class_labels: Optional[torch.LongTensor] = None,
|
257 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
258 |
+
attention_mask: Optional[torch.Tensor] = None,
|
259 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
260 |
+
return_dict: bool = True,
|
261 |
+
audio_context: Optional[torch.Tensor] = None,
|
262 |
+
f_multiplier: Optional[float] = 1.0
|
263 |
+
):
|
264 |
+
"""
|
265 |
+
The [`Transformer2DModel`] forward method.
|
266 |
+
|
267 |
+
Args:
|
268 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
269 |
+
Input `hidden_states`.
|
270 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
271 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
272 |
+
self-attention.
|
273 |
+
timestep ( `torch.LongTensor`, *optional*):
|
274 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
275 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
276 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
277 |
+
`AdaLayerZeroNorm`.
|
278 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
279 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
280 |
+
`self.processor` in
|
281 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
282 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
283 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
284 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
285 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
286 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
287 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
288 |
+
|
289 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
290 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
291 |
+
|
292 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
293 |
+
above. This bias will be added to the cross-attention scores.
|
294 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
295 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
296 |
+
tuple.
|
297 |
+
|
298 |
+
Returns:
|
299 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
300 |
+
`tuple` where the first element is the sample tensor.
|
301 |
+
"""
|
302 |
+
if cross_attention_kwargs is not None:
|
303 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
304 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored.")
|
305 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
306 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
307 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
308 |
+
# expects mask of shape:
|
309 |
+
# [batch, key_tokens]
|
310 |
+
# adds singleton query_tokens dimension:
|
311 |
+
# [batch, 1, key_tokens]
|
312 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
313 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
314 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
315 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
316 |
+
# assume that mask is expressed as:
|
317 |
+
# (1 = keep, 0 = discard)
|
318 |
+
# convert mask into a bias that can be added to attention scores:
|
319 |
+
# (keep = +0, discard = -10000.0)
|
320 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
321 |
+
attention_mask = attention_mask.unsqueeze(1)
|
322 |
+
|
323 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
324 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
325 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
326 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
327 |
+
|
328 |
+
# 1. Input
|
329 |
+
if self.is_input_continuous:
|
330 |
+
batch, _, height, width = hidden_states.shape
|
331 |
+
residual = hidden_states
|
332 |
+
|
333 |
+
hidden_states = self.norm(hidden_states)
|
334 |
+
if not self.use_linear_projection:
|
335 |
+
hidden_states = self.proj_in(hidden_states)
|
336 |
+
inner_dim = hidden_states.shape[1]
|
337 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
338 |
+
else:
|
339 |
+
inner_dim = hidden_states.shape[1]
|
340 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
341 |
+
hidden_states = self.proj_in(hidden_states)
|
342 |
+
|
343 |
+
elif self.is_input_vectorized:
|
344 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
345 |
+
elif self.is_input_patches:
|
346 |
+
height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
|
347 |
+
hidden_states = self.pos_embed(hidden_states)
|
348 |
+
|
349 |
+
if self.adaln_single is not None:
|
350 |
+
if self.use_additional_conditions and added_cond_kwargs is None:
|
351 |
+
raise ValueError(
|
352 |
+
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
|
353 |
+
)
|
354 |
+
batch_size = hidden_states.shape[0]
|
355 |
+
timestep, embedded_timestep = self.adaln_single(
|
356 |
+
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
|
357 |
+
)
|
358 |
+
|
359 |
+
# 2. Blocks
|
360 |
+
if self.caption_projection is not None:
|
361 |
+
batch_size = hidden_states.shape[0]
|
362 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
363 |
+
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
364 |
+
|
365 |
+
for block in self.transformer_blocks:
|
366 |
+
if self.training and self.gradient_checkpointing:
|
367 |
+
|
368 |
+
def create_custom_forward(module, return_dict=None):
|
369 |
+
def custom_forward(*inputs):
|
370 |
+
if return_dict is not None:
|
371 |
+
return module(*inputs, return_dict=return_dict)
|
372 |
+
else:
|
373 |
+
return module(*inputs)
|
374 |
+
|
375 |
+
return custom_forward
|
376 |
+
|
377 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
378 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
379 |
+
create_custom_forward(block),
|
380 |
+
hidden_states,
|
381 |
+
attention_mask,
|
382 |
+
encoder_hidden_states,
|
383 |
+
encoder_attention_mask,
|
384 |
+
timestep,
|
385 |
+
cross_attention_kwargs,
|
386 |
+
class_labels,
|
387 |
+
audio_context,
|
388 |
+
f_multiplier,
|
389 |
+
**ckpt_kwargs,
|
390 |
+
)
|
391 |
+
else:
|
392 |
+
hidden_states = block(
|
393 |
+
hidden_states,
|
394 |
+
attention_mask=attention_mask,
|
395 |
+
encoder_hidden_states=encoder_hidden_states,
|
396 |
+
encoder_attention_mask=encoder_attention_mask,
|
397 |
+
timestep=timestep,
|
398 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
399 |
+
class_labels=class_labels,
|
400 |
+
audio_context=audio_context,
|
401 |
+
f_multiplier=f_multiplier,
|
402 |
+
)
|
403 |
+
|
404 |
+
# 3. Output
|
405 |
+
if self.is_input_continuous:
|
406 |
+
if not self.use_linear_projection:
|
407 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
408 |
+
hidden_states = self.proj_out(hidden_states)
|
409 |
+
else:
|
410 |
+
hidden_states = self.proj_out(hidden_states)
|
411 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
412 |
+
|
413 |
+
output = hidden_states + residual
|
414 |
+
elif self.is_input_vectorized:
|
415 |
+
hidden_states = self.norm_out(hidden_states)
|
416 |
+
logits = self.out(hidden_states)
|
417 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
418 |
+
logits = logits.permute(0, 2, 1)
|
419 |
+
|
420 |
+
# log(p(x_0))
|
421 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
422 |
+
|
423 |
+
if self.is_input_patches:
|
424 |
+
if self.config.norm_type != "ada_norm_single":
|
425 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
426 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
427 |
+
)
|
428 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
429 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
430 |
+
hidden_states = self.proj_out_2(hidden_states)
|
431 |
+
elif self.config.norm_type == "ada_norm_single":
|
432 |
+
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
|
433 |
+
hidden_states = self.norm_out(hidden_states)
|
434 |
+
# Modulation
|
435 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
436 |
+
hidden_states = self.proj_out(hidden_states)
|
437 |
+
hidden_states = hidden_states.squeeze(1)
|
438 |
+
|
439 |
+
# unpatchify
|
440 |
+
if self.adaln_single is None:
|
441 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
442 |
+
hidden_states = hidden_states.reshape(
|
443 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
444 |
+
)
|
445 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
446 |
+
output = hidden_states.reshape(
|
447 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
448 |
+
)
|
449 |
+
|
450 |
+
if not return_dict:
|
451 |
+
return (output,)
|
452 |
+
|
453 |
+
return Transformer2DModelOutput(sample=output)
|
unet2d_custom.py
ADDED
@@ -0,0 +1,1314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.utils.checkpoint
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
12 |
+
#from diffusers.loaders import UNet2DConditionLoadersMixin
|
13 |
+
|
14 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
15 |
+
from diffusers.models.activations import get_activation
|
16 |
+
|
17 |
+
from diffusers.models.attention_processor import (
|
18 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
19 |
+
CROSS_ATTENTION_PROCESSORS,
|
20 |
+
Attention,
|
21 |
+
AttentionProcessor,
|
22 |
+
AttnAddedKVProcessor,
|
23 |
+
AttnProcessor,
|
24 |
+
)
|
25 |
+
from diffusers.models.embeddings import (
|
26 |
+
GaussianFourierProjection,
|
27 |
+
#GLIGENTextBoundingboxProjection,
|
28 |
+
ImageHintTimeEmbedding,
|
29 |
+
ImageProjection,
|
30 |
+
ImageTimeEmbedding,
|
31 |
+
TextImageProjection,
|
32 |
+
TextImageTimeEmbedding,
|
33 |
+
TextTimeEmbedding,
|
34 |
+
TimestepEmbedding,
|
35 |
+
Timesteps,
|
36 |
+
)
|
37 |
+
from diffusers.models.modeling_utils import ModelMixin
|
38 |
+
|
39 |
+
from unet_2d_blocks_custom import (
|
40 |
+
get_down_block,
|
41 |
+
get_mid_block,
|
42 |
+
get_up_block,
|
43 |
+
)
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
@dataclass
|
51 |
+
class UNet2DConditionOutput(BaseOutput):
|
52 |
+
"""
|
53 |
+
The output of [`UNet2DConditionModel`].
|
54 |
+
|
55 |
+
Args:
|
56 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
57 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
58 |
+
"""
|
59 |
+
|
60 |
+
sample: torch.FloatTensor = None
|
61 |
+
|
62 |
+
|
63 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
|
64 |
+
r"""
|
65 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
66 |
+
shaped output.
|
67 |
+
|
68 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
69 |
+
for all models (such as downloading or saving).
|
70 |
+
|
71 |
+
Parameters:
|
72 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
73 |
+
Height and width of input/output sample.
|
74 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
75 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
76 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
77 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
78 |
+
Whether to flip the sin to cos in the time embedding.
|
79 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
80 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
81 |
+
The tuple of downsample blocks to use.
|
82 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
83 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
84 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
85 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
86 |
+
The tuple of upsample blocks to use.
|
87 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
88 |
+
Whether to include self-attention in the basic transformer blocks, see
|
89 |
+
[`~models.attention.BasicTransformerBlock`].
|
90 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
91 |
+
The tuple of output channels for each block.
|
92 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
93 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
94 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
95 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
96 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
97 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
98 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
99 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
100 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
101 |
+
The dimension of the cross attention features.
|
102 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
103 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
104 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
105 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
106 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
107 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
108 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
109 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
110 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
111 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
112 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
113 |
+
dimension to `cross_attention_dim`.
|
114 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
115 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
116 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
117 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
118 |
+
num_attention_heads (`int`, *optional*):
|
119 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
120 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
121 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
122 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
123 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
124 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
125 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
126 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
127 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
128 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
129 |
+
Dimension for the timestep embeddings.
|
130 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
131 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
132 |
+
class conditioning with `class_embed_type` equal to `None`.
|
133 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
134 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
135 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
136 |
+
An optional override for the dimension of the projected time embedding.
|
137 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
138 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
139 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
140 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
141 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
142 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
143 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
144 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
145 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
146 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
147 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
148 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
149 |
+
embeddings with the class embeddings.
|
150 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
151 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
152 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
153 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
154 |
+
otherwise.
|
155 |
+
"""
|
156 |
+
|
157 |
+
_supports_gradient_checkpointing = True
|
158 |
+
|
159 |
+
@register_to_config
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
sample_size: Optional[int] = None,
|
163 |
+
in_channels: int = 4,
|
164 |
+
out_channels: int = 4,
|
165 |
+
center_input_sample: bool = False,
|
166 |
+
flip_sin_to_cos: bool = True,
|
167 |
+
freq_shift: int = 0,
|
168 |
+
down_block_types: Tuple[str] = (
|
169 |
+
"CrossAttnDownBlock2D",
|
170 |
+
"CrossAttnDownBlock2D",
|
171 |
+
"CrossAttnDownBlock2D",
|
172 |
+
"DownBlock2D",
|
173 |
+
),
|
174 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
175 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
176 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
177 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
178 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
179 |
+
downsample_padding: int = 1,
|
180 |
+
mid_block_scale_factor: float = 1,
|
181 |
+
dropout: float = 0.0,
|
182 |
+
act_fn: str = "silu",
|
183 |
+
norm_num_groups: Optional[int] = 32,
|
184 |
+
norm_eps: float = 1e-5,
|
185 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
186 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
187 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
188 |
+
encoder_hid_dim: Optional[int] = None,
|
189 |
+
encoder_hid_dim_type: Optional[str] = None,
|
190 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
191 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
192 |
+
dual_cross_attention: bool = False,
|
193 |
+
use_linear_projection: bool = False,
|
194 |
+
class_embed_type: Optional[str] = None,
|
195 |
+
addition_embed_type: Optional[str] = None,
|
196 |
+
addition_time_embed_dim: Optional[int] = None,
|
197 |
+
num_class_embeds: Optional[int] = None,
|
198 |
+
upcast_attention: bool = False,
|
199 |
+
resnet_time_scale_shift: str = "default",
|
200 |
+
resnet_skip_time_act: bool = False,
|
201 |
+
resnet_out_scale_factor: float = 1.0,
|
202 |
+
time_embedding_type: str = "positional",
|
203 |
+
time_embedding_dim: Optional[int] = None,
|
204 |
+
time_embedding_act_fn: Optional[str] = None,
|
205 |
+
timestep_post_act: Optional[str] = None,
|
206 |
+
time_cond_proj_dim: Optional[int] = None,
|
207 |
+
conv_in_kernel: int = 3,
|
208 |
+
conv_out_kernel: int = 3,
|
209 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
210 |
+
attention_type: str = "default",
|
211 |
+
class_embeddings_concat: bool = False,
|
212 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
213 |
+
cross_attention_norm: Optional[str] = None,
|
214 |
+
addition_embed_type_num_heads: int = 64,
|
215 |
+
use_adapter_list: list = [False, False, False],
|
216 |
+
):
|
217 |
+
super().__init__()
|
218 |
+
|
219 |
+
self.sample_size = sample_size
|
220 |
+
|
221 |
+
if num_attention_heads is not None:
|
222 |
+
raise ValueError(
|
223 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
224 |
+
)
|
225 |
+
|
226 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
227 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
228 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
229 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
230 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
231 |
+
# which is why we correct for the naming here.
|
232 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
233 |
+
|
234 |
+
# Check inputs
|
235 |
+
self._check_config(
|
236 |
+
down_block_types=down_block_types,
|
237 |
+
up_block_types=up_block_types,
|
238 |
+
only_cross_attention=only_cross_attention,
|
239 |
+
block_out_channels=block_out_channels,
|
240 |
+
layers_per_block=layers_per_block,
|
241 |
+
cross_attention_dim=cross_attention_dim,
|
242 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
243 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
244 |
+
attention_head_dim=attention_head_dim,
|
245 |
+
num_attention_heads=num_attention_heads,
|
246 |
+
)
|
247 |
+
|
248 |
+
# input
|
249 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
250 |
+
self.conv_in = nn.Conv2d(
|
251 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
252 |
+
)
|
253 |
+
|
254 |
+
# time
|
255 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
256 |
+
time_embedding_type,
|
257 |
+
block_out_channels=block_out_channels,
|
258 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
259 |
+
freq_shift=freq_shift,
|
260 |
+
time_embedding_dim=time_embedding_dim,
|
261 |
+
)
|
262 |
+
|
263 |
+
self.time_embedding = TimestepEmbedding(
|
264 |
+
timestep_input_dim,
|
265 |
+
time_embed_dim,
|
266 |
+
act_fn=act_fn,
|
267 |
+
post_act_fn=timestep_post_act,
|
268 |
+
cond_proj_dim=time_cond_proj_dim,
|
269 |
+
)
|
270 |
+
|
271 |
+
self._set_encoder_hid_proj(
|
272 |
+
encoder_hid_dim_type,
|
273 |
+
cross_attention_dim=cross_attention_dim,
|
274 |
+
encoder_hid_dim=encoder_hid_dim,
|
275 |
+
)
|
276 |
+
|
277 |
+
# class embedding
|
278 |
+
self._set_class_embedding(
|
279 |
+
class_embed_type,
|
280 |
+
act_fn=act_fn,
|
281 |
+
num_class_embeds=num_class_embeds,
|
282 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
283 |
+
time_embed_dim=time_embed_dim,
|
284 |
+
timestep_input_dim=timestep_input_dim,
|
285 |
+
)
|
286 |
+
|
287 |
+
self._set_add_embedding(
|
288 |
+
addition_embed_type,
|
289 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
290 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
291 |
+
cross_attention_dim=cross_attention_dim,
|
292 |
+
encoder_hid_dim=encoder_hid_dim,
|
293 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
294 |
+
freq_shift=freq_shift,
|
295 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
296 |
+
time_embed_dim=time_embed_dim,
|
297 |
+
)
|
298 |
+
|
299 |
+
if time_embedding_act_fn is None:
|
300 |
+
self.time_embed_act = None
|
301 |
+
else:
|
302 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
303 |
+
|
304 |
+
self.down_blocks = nn.ModuleList([])
|
305 |
+
self.up_blocks = nn.ModuleList([])
|
306 |
+
|
307 |
+
if isinstance(only_cross_attention, bool):
|
308 |
+
if mid_block_only_cross_attention is None:
|
309 |
+
mid_block_only_cross_attention = only_cross_attention
|
310 |
+
|
311 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
312 |
+
|
313 |
+
if mid_block_only_cross_attention is None:
|
314 |
+
mid_block_only_cross_attention = False
|
315 |
+
|
316 |
+
if isinstance(num_attention_heads, int):
|
317 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
318 |
+
|
319 |
+
if isinstance(attention_head_dim, int):
|
320 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
321 |
+
|
322 |
+
if isinstance(cross_attention_dim, int):
|
323 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
324 |
+
|
325 |
+
if isinstance(layers_per_block, int):
|
326 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
327 |
+
|
328 |
+
if isinstance(transformer_layers_per_block, int):
|
329 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
330 |
+
|
331 |
+
if class_embeddings_concat:
|
332 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
333 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
334 |
+
# regular time embeddings
|
335 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
336 |
+
else:
|
337 |
+
blocks_time_embed_dim = time_embed_dim
|
338 |
+
|
339 |
+
# down
|
340 |
+
output_channel = block_out_channels[0]
|
341 |
+
for i, down_block_type in enumerate(down_block_types):
|
342 |
+
input_channel = output_channel
|
343 |
+
output_channel = block_out_channels[i]
|
344 |
+
is_final_block = i == len(block_out_channels) - 1
|
345 |
+
|
346 |
+
down_block = get_down_block(
|
347 |
+
down_block_type,
|
348 |
+
num_layers=layers_per_block[i],
|
349 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
350 |
+
in_channels=input_channel,
|
351 |
+
out_channels=output_channel,
|
352 |
+
temb_channels=blocks_time_embed_dim,
|
353 |
+
add_downsample=not is_final_block,
|
354 |
+
resnet_eps=norm_eps,
|
355 |
+
resnet_act_fn=act_fn,
|
356 |
+
resnet_groups=norm_num_groups,
|
357 |
+
cross_attention_dim=cross_attention_dim[i],
|
358 |
+
num_attention_heads=num_attention_heads[i],
|
359 |
+
downsample_padding=downsample_padding,
|
360 |
+
dual_cross_attention=dual_cross_attention,
|
361 |
+
use_linear_projection=use_linear_projection,
|
362 |
+
only_cross_attention=only_cross_attention[i],
|
363 |
+
upcast_attention=upcast_attention,
|
364 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
365 |
+
attention_type=attention_type,
|
366 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
367 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
368 |
+
cross_attention_norm=cross_attention_norm,
|
369 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
370 |
+
dropout=dropout,
|
371 |
+
use_adapter=use_adapter_list[0],
|
372 |
+
)
|
373 |
+
self.down_blocks.append(down_block)
|
374 |
+
|
375 |
+
# mid
|
376 |
+
self.mid_block = get_mid_block(
|
377 |
+
mid_block_type,
|
378 |
+
temb_channels=blocks_time_embed_dim,
|
379 |
+
in_channels=block_out_channels[-1],
|
380 |
+
resnet_eps=norm_eps,
|
381 |
+
resnet_act_fn=act_fn,
|
382 |
+
resnet_groups=norm_num_groups,
|
383 |
+
output_scale_factor=mid_block_scale_factor,
|
384 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
385 |
+
num_attention_heads=num_attention_heads[-1],
|
386 |
+
cross_attention_dim=cross_attention_dim[-1],
|
387 |
+
dual_cross_attention=dual_cross_attention,
|
388 |
+
use_linear_projection=use_linear_projection,
|
389 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
390 |
+
upcast_attention=upcast_attention,
|
391 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
392 |
+
attention_type=attention_type,
|
393 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
394 |
+
cross_attention_norm=cross_attention_norm,
|
395 |
+
attention_head_dim=attention_head_dim[-1],
|
396 |
+
dropout=dropout,
|
397 |
+
use_adapter=use_adapter_list[1],
|
398 |
+
)
|
399 |
+
|
400 |
+
# count how many layers upsample the images
|
401 |
+
self.num_upsamplers = 0
|
402 |
+
|
403 |
+
# up
|
404 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
405 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
406 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
407 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
408 |
+
reversed_transformer_layers_per_block = (
|
409 |
+
list(reversed(transformer_layers_per_block))
|
410 |
+
if reverse_transformer_layers_per_block is None
|
411 |
+
else reverse_transformer_layers_per_block
|
412 |
+
)
|
413 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
414 |
+
|
415 |
+
output_channel = reversed_block_out_channels[0]
|
416 |
+
for i, up_block_type in enumerate(up_block_types):
|
417 |
+
is_final_block = i == len(block_out_channels) - 1
|
418 |
+
|
419 |
+
prev_output_channel = output_channel
|
420 |
+
output_channel = reversed_block_out_channels[i]
|
421 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
422 |
+
|
423 |
+
# add upsample block for all BUT final layer
|
424 |
+
if not is_final_block:
|
425 |
+
add_upsample = True
|
426 |
+
self.num_upsamplers += 1
|
427 |
+
else:
|
428 |
+
add_upsample = False
|
429 |
+
|
430 |
+
up_block = get_up_block(
|
431 |
+
up_block_type,
|
432 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
433 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
434 |
+
in_channels=input_channel,
|
435 |
+
out_channels=output_channel,
|
436 |
+
prev_output_channel=prev_output_channel,
|
437 |
+
temb_channels=blocks_time_embed_dim,
|
438 |
+
add_upsample=add_upsample,
|
439 |
+
resnet_eps=norm_eps,
|
440 |
+
resnet_act_fn=act_fn,
|
441 |
+
resolution_idx=i,
|
442 |
+
resnet_groups=norm_num_groups,
|
443 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
444 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
445 |
+
dual_cross_attention=dual_cross_attention,
|
446 |
+
use_linear_projection=use_linear_projection,
|
447 |
+
only_cross_attention=only_cross_attention[i],
|
448 |
+
upcast_attention=upcast_attention,
|
449 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
450 |
+
attention_type=attention_type,
|
451 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
452 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
453 |
+
cross_attention_norm=cross_attention_norm,
|
454 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
455 |
+
dropout=dropout,
|
456 |
+
use_adapter=use_adapter_list[2],
|
457 |
+
)
|
458 |
+
self.up_blocks.append(up_block)
|
459 |
+
prev_output_channel = output_channel
|
460 |
+
|
461 |
+
# out
|
462 |
+
if norm_num_groups is not None:
|
463 |
+
self.conv_norm_out = nn.GroupNorm(
|
464 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
465 |
+
)
|
466 |
+
|
467 |
+
self.conv_act = get_activation(act_fn)
|
468 |
+
|
469 |
+
else:
|
470 |
+
self.conv_norm_out = None
|
471 |
+
self.conv_act = None
|
472 |
+
|
473 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
474 |
+
self.conv_out = nn.Conv2d(
|
475 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
476 |
+
)
|
477 |
+
|
478 |
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
479 |
+
|
480 |
+
def _check_config(
|
481 |
+
self,
|
482 |
+
down_block_types: Tuple[str],
|
483 |
+
up_block_types: Tuple[str],
|
484 |
+
only_cross_attention: Union[bool, Tuple[bool]],
|
485 |
+
block_out_channels: Tuple[int],
|
486 |
+
layers_per_block: Union[int, Tuple[int]],
|
487 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
488 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
489 |
+
reverse_transformer_layers_per_block: bool,
|
490 |
+
attention_head_dim: int,
|
491 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
492 |
+
):
|
493 |
+
if len(down_block_types) != len(up_block_types):
|
494 |
+
raise ValueError(
|
495 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
496 |
+
)
|
497 |
+
|
498 |
+
if len(block_out_channels) != len(down_block_types):
|
499 |
+
raise ValueError(
|
500 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
501 |
+
)
|
502 |
+
|
503 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
504 |
+
raise ValueError(
|
505 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
506 |
+
)
|
507 |
+
|
508 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
509 |
+
raise ValueError(
|
510 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
511 |
+
)
|
512 |
+
|
513 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
514 |
+
raise ValueError(
|
515 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
516 |
+
)
|
517 |
+
|
518 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
519 |
+
raise ValueError(
|
520 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
521 |
+
)
|
522 |
+
|
523 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
524 |
+
raise ValueError(
|
525 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
526 |
+
)
|
527 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
528 |
+
for layer_number_per_block in transformer_layers_per_block:
|
529 |
+
if isinstance(layer_number_per_block, list):
|
530 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
531 |
+
|
532 |
+
def _set_time_proj(
|
533 |
+
self,
|
534 |
+
time_embedding_type: str,
|
535 |
+
block_out_channels: int,
|
536 |
+
flip_sin_to_cos: bool,
|
537 |
+
freq_shift: float,
|
538 |
+
time_embedding_dim: int,
|
539 |
+
) -> Tuple[int, int]:
|
540 |
+
if time_embedding_type == "fourier":
|
541 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
542 |
+
if time_embed_dim % 2 != 0:
|
543 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
544 |
+
self.time_proj = GaussianFourierProjection(
|
545 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
546 |
+
)
|
547 |
+
timestep_input_dim = time_embed_dim
|
548 |
+
elif time_embedding_type == "positional":
|
549 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
550 |
+
|
551 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
552 |
+
timestep_input_dim = block_out_channels[0]
|
553 |
+
else:
|
554 |
+
raise ValueError(
|
555 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
556 |
+
)
|
557 |
+
|
558 |
+
return time_embed_dim, timestep_input_dim
|
559 |
+
|
560 |
+
def _set_encoder_hid_proj(
|
561 |
+
self,
|
562 |
+
encoder_hid_dim_type: Optional[str],
|
563 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
564 |
+
encoder_hid_dim: Optional[int],
|
565 |
+
):
|
566 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
567 |
+
encoder_hid_dim_type = "text_proj"
|
568 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
569 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
570 |
+
|
571 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
572 |
+
raise ValueError(
|
573 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
574 |
+
)
|
575 |
+
|
576 |
+
if encoder_hid_dim_type == "text_proj":
|
577 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
578 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
579 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
580 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
581 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
582 |
+
self.encoder_hid_proj = TextImageProjection(
|
583 |
+
text_embed_dim=encoder_hid_dim,
|
584 |
+
image_embed_dim=cross_attention_dim,
|
585 |
+
cross_attention_dim=cross_attention_dim,
|
586 |
+
)
|
587 |
+
elif encoder_hid_dim_type == "image_proj":
|
588 |
+
# Kandinsky 2.2
|
589 |
+
self.encoder_hid_proj = ImageProjection(
|
590 |
+
image_embed_dim=encoder_hid_dim,
|
591 |
+
cross_attention_dim=cross_attention_dim,
|
592 |
+
)
|
593 |
+
elif encoder_hid_dim_type is not None:
|
594 |
+
raise ValueError(
|
595 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
596 |
+
)
|
597 |
+
else:
|
598 |
+
self.encoder_hid_proj = None
|
599 |
+
|
600 |
+
def _set_class_embedding(
|
601 |
+
self,
|
602 |
+
class_embed_type: Optional[str],
|
603 |
+
act_fn: str,
|
604 |
+
num_class_embeds: Optional[int],
|
605 |
+
projection_class_embeddings_input_dim: Optional[int],
|
606 |
+
time_embed_dim: int,
|
607 |
+
timestep_input_dim: int,
|
608 |
+
):
|
609 |
+
if class_embed_type is None and num_class_embeds is not None:
|
610 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
611 |
+
elif class_embed_type == "timestep":
|
612 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
613 |
+
elif class_embed_type == "identity":
|
614 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
615 |
+
elif class_embed_type == "projection":
|
616 |
+
if projection_class_embeddings_input_dim is None:
|
617 |
+
raise ValueError(
|
618 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
619 |
+
)
|
620 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
621 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
622 |
+
# 2. it projects from an arbitrary input dimension.
|
623 |
+
#
|
624 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
625 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
626 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
627 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
628 |
+
elif class_embed_type == "simple_projection":
|
629 |
+
if projection_class_embeddings_input_dim is None:
|
630 |
+
raise ValueError(
|
631 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
632 |
+
)
|
633 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
634 |
+
else:
|
635 |
+
self.class_embedding = None
|
636 |
+
|
637 |
+
def _set_add_embedding(
|
638 |
+
self,
|
639 |
+
addition_embed_type: str,
|
640 |
+
addition_embed_type_num_heads: int,
|
641 |
+
addition_time_embed_dim: Optional[int],
|
642 |
+
flip_sin_to_cos: bool,
|
643 |
+
freq_shift: float,
|
644 |
+
cross_attention_dim: Optional[int],
|
645 |
+
encoder_hid_dim: Optional[int],
|
646 |
+
projection_class_embeddings_input_dim: Optional[int],
|
647 |
+
time_embed_dim: int,
|
648 |
+
):
|
649 |
+
if addition_embed_type == "text":
|
650 |
+
if encoder_hid_dim is not None:
|
651 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
652 |
+
else:
|
653 |
+
text_time_embedding_from_dim = cross_attention_dim
|
654 |
+
|
655 |
+
self.add_embedding = TextTimeEmbedding(
|
656 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
657 |
+
)
|
658 |
+
elif addition_embed_type == "text_image":
|
659 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
660 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
661 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
662 |
+
self.add_embedding = TextImageTimeEmbedding(
|
663 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
664 |
+
)
|
665 |
+
elif addition_embed_type == "text_time":
|
666 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
667 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
668 |
+
elif addition_embed_type == "image":
|
669 |
+
# Kandinsky 2.2
|
670 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
671 |
+
elif addition_embed_type == "image_hint":
|
672 |
+
# Kandinsky 2.2 ControlNet
|
673 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
674 |
+
elif addition_embed_type is not None:
|
675 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
676 |
+
|
677 |
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
678 |
+
if attention_type in ["gated", "gated-text-image"]:
|
679 |
+
positive_len = 768
|
680 |
+
if isinstance(cross_attention_dim, int):
|
681 |
+
positive_len = cross_attention_dim
|
682 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
683 |
+
positive_len = cross_attention_dim[0]
|
684 |
+
|
685 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
686 |
+
self.position_net = GLIGENTextBoundingboxProjection(
|
687 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
688 |
+
)
|
689 |
+
|
690 |
+
@property
|
691 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
692 |
+
r"""
|
693 |
+
Returns:
|
694 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
695 |
+
indexed by its weight name.
|
696 |
+
"""
|
697 |
+
# set recursively
|
698 |
+
processors = {}
|
699 |
+
|
700 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
701 |
+
if hasattr(module, "get_processor"):
|
702 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
703 |
+
|
704 |
+
for sub_name, child in module.named_children():
|
705 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
706 |
+
|
707 |
+
return processors
|
708 |
+
|
709 |
+
for name, module in self.named_children():
|
710 |
+
fn_recursive_add_processors(name, module, processors)
|
711 |
+
|
712 |
+
return processors
|
713 |
+
|
714 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
715 |
+
r"""
|
716 |
+
Sets the attention processor to use to compute attention.
|
717 |
+
|
718 |
+
Parameters:
|
719 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
720 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
721 |
+
for **all** `Attention` layers.
|
722 |
+
|
723 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
724 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
725 |
+
|
726 |
+
"""
|
727 |
+
count = len(self.attn_processors.keys())
|
728 |
+
|
729 |
+
if isinstance(processor, dict) and len(processor) != count:
|
730 |
+
raise ValueError(
|
731 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
732 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
733 |
+
)
|
734 |
+
|
735 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
736 |
+
if hasattr(module, "set_processor"):
|
737 |
+
if not isinstance(processor, dict):
|
738 |
+
module.set_processor(processor)
|
739 |
+
else:
|
740 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
741 |
+
|
742 |
+
for sub_name, child in module.named_children():
|
743 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
744 |
+
|
745 |
+
for name, module in self.named_children():
|
746 |
+
fn_recursive_attn_processor(name, module, processor)
|
747 |
+
|
748 |
+
def set_default_attn_processor(self):
|
749 |
+
"""
|
750 |
+
Disables custom attention processors and sets the default attention implementation.
|
751 |
+
"""
|
752 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
753 |
+
processor = AttnAddedKVProcessor()
|
754 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
755 |
+
processor = AttnProcessor()
|
756 |
+
else:
|
757 |
+
raise ValueError(
|
758 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
759 |
+
)
|
760 |
+
|
761 |
+
self.set_attn_processor(processor)
|
762 |
+
|
763 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
764 |
+
r"""
|
765 |
+
Enable sliced attention computation.
|
766 |
+
|
767 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
768 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
769 |
+
|
770 |
+
Args:
|
771 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
772 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
773 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
774 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
775 |
+
must be a multiple of `slice_size`.
|
776 |
+
"""
|
777 |
+
sliceable_head_dims = []
|
778 |
+
|
779 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
780 |
+
if hasattr(module, "set_attention_slice"):
|
781 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
782 |
+
|
783 |
+
for child in module.children():
|
784 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
785 |
+
|
786 |
+
# retrieve number of attention layers
|
787 |
+
for module in self.children():
|
788 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
789 |
+
|
790 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
791 |
+
|
792 |
+
if slice_size == "auto":
|
793 |
+
# half the attention head size is usually a good trade-off between
|
794 |
+
# speed and memory
|
795 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
796 |
+
elif slice_size == "max":
|
797 |
+
# make smallest slice possible
|
798 |
+
slice_size = num_sliceable_layers * [1]
|
799 |
+
|
800 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
801 |
+
|
802 |
+
if len(slice_size) != len(sliceable_head_dims):
|
803 |
+
raise ValueError(
|
804 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
805 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
806 |
+
)
|
807 |
+
|
808 |
+
for i in range(len(slice_size)):
|
809 |
+
size = slice_size[i]
|
810 |
+
dim = sliceable_head_dims[i]
|
811 |
+
if size is not None and size > dim:
|
812 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
813 |
+
|
814 |
+
# Recursively walk through all the children.
|
815 |
+
# Any children which exposes the set_attention_slice method
|
816 |
+
# gets the message
|
817 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
818 |
+
if hasattr(module, "set_attention_slice"):
|
819 |
+
module.set_attention_slice(slice_size.pop())
|
820 |
+
|
821 |
+
for child in module.children():
|
822 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
823 |
+
|
824 |
+
reversed_slice_size = list(reversed(slice_size))
|
825 |
+
for module in self.children():
|
826 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
827 |
+
|
828 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
829 |
+
if hasattr(module, "gradient_checkpointing"):
|
830 |
+
module.gradient_checkpointing = value
|
831 |
+
|
832 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
833 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
834 |
+
|
835 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
836 |
+
|
837 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
838 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
839 |
+
|
840 |
+
Args:
|
841 |
+
s1 (`float`):
|
842 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
843 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
844 |
+
s2 (`float`):
|
845 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
846 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
847 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
848 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
849 |
+
"""
|
850 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
851 |
+
setattr(upsample_block, "s1", s1)
|
852 |
+
setattr(upsample_block, "s2", s2)
|
853 |
+
setattr(upsample_block, "b1", b1)
|
854 |
+
setattr(upsample_block, "b2", b2)
|
855 |
+
|
856 |
+
def disable_freeu(self):
|
857 |
+
"""Disables the FreeU mechanism."""
|
858 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
859 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
860 |
+
for k in freeu_keys:
|
861 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
862 |
+
setattr(upsample_block, k, None)
|
863 |
+
|
864 |
+
def fuse_qkv_projections(self):
|
865 |
+
"""
|
866 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
|
867 |
+
key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
|
868 |
+
|
869 |
+
<Tip warning={true}>
|
870 |
+
|
871 |
+
This API is 🧪 experimental.
|
872 |
+
|
873 |
+
</Tip>
|
874 |
+
"""
|
875 |
+
self.original_attn_processors = None
|
876 |
+
|
877 |
+
for _, attn_processor in self.attn_processors.items():
|
878 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
879 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
880 |
+
|
881 |
+
self.original_attn_processors = self.attn_processors
|
882 |
+
|
883 |
+
for module in self.modules():
|
884 |
+
if isinstance(module, Attention):
|
885 |
+
module.fuse_projections(fuse=True)
|
886 |
+
|
887 |
+
def unfuse_qkv_projections(self):
|
888 |
+
"""Disables the fused QKV projection if enabled.
|
889 |
+
|
890 |
+
<Tip warning={true}>
|
891 |
+
|
892 |
+
This API is 🧪 experimental.
|
893 |
+
|
894 |
+
</Tip>
|
895 |
+
|
896 |
+
"""
|
897 |
+
if self.original_attn_processors is not None:
|
898 |
+
self.set_attn_processor(self.original_attn_processors)
|
899 |
+
|
900 |
+
def unload_lora(self):
|
901 |
+
"""Unloads LoRA weights."""
|
902 |
+
deprecate(
|
903 |
+
"unload_lora",
|
904 |
+
"0.28.0",
|
905 |
+
"Calling `unload_lora()` is deprecated and will be removed in a future version. Please install `peft` and then call `disable_adapters().",
|
906 |
+
)
|
907 |
+
for module in self.modules():
|
908 |
+
if hasattr(module, "set_lora_layer"):
|
909 |
+
module.set_lora_layer(None)
|
910 |
+
|
911 |
+
def get_time_embed(
|
912 |
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
913 |
+
) -> Optional[torch.Tensor]:
|
914 |
+
timesteps = timestep
|
915 |
+
if not torch.is_tensor(timesteps):
|
916 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
917 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
918 |
+
is_mps = sample.device.type == "mps"
|
919 |
+
if isinstance(timestep, float):
|
920 |
+
dtype = torch.float32 if is_mps else torch.float64
|
921 |
+
else:
|
922 |
+
dtype = torch.int32 if is_mps else torch.int64
|
923 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
924 |
+
elif len(timesteps.shape) == 0:
|
925 |
+
timesteps = timesteps[None].to(sample.device)
|
926 |
+
|
927 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
928 |
+
timesteps = timesteps.expand(sample.shape[0])
|
929 |
+
|
930 |
+
t_emb = self.time_proj(timesteps)
|
931 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
932 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
933 |
+
# there might be better ways to encapsulate this.
|
934 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
935 |
+
return t_emb
|
936 |
+
|
937 |
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
938 |
+
class_emb = None
|
939 |
+
if self.class_embedding is not None:
|
940 |
+
if class_labels is None:
|
941 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
942 |
+
|
943 |
+
if self.config.class_embed_type == "timestep":
|
944 |
+
class_labels = self.time_proj(class_labels)
|
945 |
+
|
946 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
947 |
+
# there might be better ways to encapsulate this.
|
948 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
949 |
+
|
950 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
951 |
+
return class_emb
|
952 |
+
|
953 |
+
def get_aug_embed(
|
954 |
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
955 |
+
) -> Optional[torch.Tensor]:
|
956 |
+
aug_emb = None
|
957 |
+
if self.config.addition_embed_type == "text":
|
958 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
959 |
+
elif self.config.addition_embed_type == "text_image":
|
960 |
+
# Kandinsky 2.1 - style
|
961 |
+
if "image_embeds" not in added_cond_kwargs:
|
962 |
+
raise ValueError(
|
963 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
964 |
+
)
|
965 |
+
|
966 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
967 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
968 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
969 |
+
elif self.config.addition_embed_type == "text_time":
|
970 |
+
# SDXL - style
|
971 |
+
if "text_embeds" not in added_cond_kwargs:
|
972 |
+
raise ValueError(
|
973 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
974 |
+
)
|
975 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
976 |
+
if "time_ids" not in added_cond_kwargs:
|
977 |
+
raise ValueError(
|
978 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
979 |
+
)
|
980 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
981 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
982 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
983 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
984 |
+
add_embeds = add_embeds.to(emb.dtype)
|
985 |
+
aug_emb = self.add_embedding(add_embeds)
|
986 |
+
elif self.config.addition_embed_type == "image":
|
987 |
+
# Kandinsky 2.2 - style
|
988 |
+
if "image_embeds" not in added_cond_kwargs:
|
989 |
+
raise ValueError(
|
990 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
991 |
+
)
|
992 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
993 |
+
aug_emb = self.add_embedding(image_embs)
|
994 |
+
elif self.config.addition_embed_type == "image_hint":
|
995 |
+
# Kandinsky 2.2 - style
|
996 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
997 |
+
raise ValueError(
|
998 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
999 |
+
)
|
1000 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1001 |
+
hint = added_cond_kwargs.get("hint")
|
1002 |
+
aug_emb = self.add_embedding(image_embs, hint)
|
1003 |
+
return aug_emb
|
1004 |
+
|
1005 |
+
def process_encoder_hidden_states(
|
1006 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1007 |
+
) -> torch.Tensor:
|
1008 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1009 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1010 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1011 |
+
# Kadinsky 2.1 - style
|
1012 |
+
if "image_embeds" not in added_cond_kwargs:
|
1013 |
+
raise ValueError(
|
1014 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1018 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1019 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1020 |
+
# Kandinsky 2.2 - style
|
1021 |
+
if "image_embeds" not in added_cond_kwargs:
|
1022 |
+
raise ValueError(
|
1023 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1024 |
+
)
|
1025 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1026 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1027 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1028 |
+
if "image_embeds" not in added_cond_kwargs:
|
1029 |
+
raise ValueError(
|
1030 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1031 |
+
)
|
1032 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1033 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1034 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1035 |
+
return encoder_hidden_states
|
1036 |
+
|
1037 |
+
def forward(
|
1038 |
+
self,
|
1039 |
+
sample: torch.FloatTensor,
|
1040 |
+
timestep: Union[torch.Tensor, float, int],
|
1041 |
+
encoder_hidden_states: torch.Tensor,
|
1042 |
+
class_labels: Optional[torch.Tensor] = None,
|
1043 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1044 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1045 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1046 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1047 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1048 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1049 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1050 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1051 |
+
return_dict: bool = True,
|
1052 |
+
audio_context: Optional[torch.Tensor] = None,
|
1053 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1054 |
+
r"""
|
1055 |
+
The [`UNet2DConditionModel`] forward method.
|
1056 |
+
|
1057 |
+
Args:
|
1058 |
+
sample (`torch.FloatTensor`):
|
1059 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1060 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1061 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
1062 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1063 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1064 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1065 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1066 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1067 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1068 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1069 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1070 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1071 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1072 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1073 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1074 |
+
`self.processor` in
|
1075 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1076 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1077 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1078 |
+
are passed along to the UNet blocks.
|
1079 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1080 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1081 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1082 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1083 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1084 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1085 |
+
encoder_attention_mask (`torch.Tensor`):
|
1086 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1087 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1088 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1089 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1090 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1091 |
+
tuple.
|
1092 |
+
|
1093 |
+
Returns:
|
1094 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1095 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
1096 |
+
a `tuple` is returned where the first element is the sample tensor.
|
1097 |
+
"""
|
1098 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1099 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1100 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1101 |
+
# on the fly if necessary.
|
1102 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1103 |
+
|
1104 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1105 |
+
forward_upsample_size = False
|
1106 |
+
upsample_size = None
|
1107 |
+
|
1108 |
+
for dim in sample.shape[-2:]:
|
1109 |
+
if dim % default_overall_up_factor != 0:
|
1110 |
+
# Forward upsample size to force interpolation output size.
|
1111 |
+
forward_upsample_size = True
|
1112 |
+
break
|
1113 |
+
|
1114 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1115 |
+
# expects mask of shape:
|
1116 |
+
# [batch, key_tokens]
|
1117 |
+
# adds singleton query_tokens dimension:
|
1118 |
+
# [batch, 1, key_tokens]
|
1119 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1120 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1121 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1122 |
+
if attention_mask is not None:
|
1123 |
+
# assume that mask is expressed as:
|
1124 |
+
# (1 = keep, 0 = discard)
|
1125 |
+
# convert mask into a bias that can be added to attention scores:
|
1126 |
+
# (keep = +0, discard = -10000.0)
|
1127 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1128 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1129 |
+
|
1130 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1131 |
+
if encoder_attention_mask is not None:
|
1132 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1133 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1134 |
+
|
1135 |
+
# 0. center input if necessary
|
1136 |
+
if self.config.center_input_sample:
|
1137 |
+
sample = 2 * sample - 1.0
|
1138 |
+
|
1139 |
+
# 1. time
|
1140 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1141 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1142 |
+
aug_emb = None
|
1143 |
+
|
1144 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1145 |
+
if class_emb is not None:
|
1146 |
+
if self.config.class_embeddings_concat:
|
1147 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1148 |
+
else:
|
1149 |
+
emb = emb + class_emb
|
1150 |
+
|
1151 |
+
aug_emb = self.get_aug_embed(
|
1152 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1153 |
+
)
|
1154 |
+
if self.config.addition_embed_type == "image_hint":
|
1155 |
+
aug_emb, hint = aug_emb
|
1156 |
+
sample = torch.cat([sample, hint], dim=1)
|
1157 |
+
|
1158 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1159 |
+
|
1160 |
+
if self.time_embed_act is not None:
|
1161 |
+
emb = self.time_embed_act(emb)
|
1162 |
+
|
1163 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1164 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
# 2. pre-process
|
1168 |
+
sample = self.conv_in(sample)
|
1169 |
+
|
1170 |
+
# 2.5 GLIGEN position net
|
1171 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1172 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1173 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1174 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1175 |
+
|
1176 |
+
# 3. down
|
1177 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1178 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1179 |
+
if cross_attention_kwargs is not None:
|
1180 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1181 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1182 |
+
else:
|
1183 |
+
lora_scale = 1.0
|
1184 |
+
|
1185 |
+
if USE_PEFT_BACKEND:
|
1186 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1187 |
+
scale_lora_layers(self, lora_scale)
|
1188 |
+
|
1189 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1190 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1191 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1192 |
+
# maintain backward compatibility for legacy usage, where
|
1193 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1194 |
+
# but can only use one or the other
|
1195 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1196 |
+
deprecate(
|
1197 |
+
"T2I should not use down_block_additional_residuals",
|
1198 |
+
"1.3.0",
|
1199 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1200 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1201 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1202 |
+
standard_warn=False,
|
1203 |
+
)
|
1204 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1205 |
+
is_adapter = True
|
1206 |
+
|
1207 |
+
down_block_res_samples = (sample,)
|
1208 |
+
for downsample_block in self.down_blocks:
|
1209 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1210 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1211 |
+
additional_residuals = {}
|
1212 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1213 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1214 |
+
|
1215 |
+
sample, res_samples = downsample_block(
|
1216 |
+
hidden_states=sample,
|
1217 |
+
temb=emb,
|
1218 |
+
encoder_hidden_states=encoder_hidden_states,
|
1219 |
+
attention_mask=attention_mask,
|
1220 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1221 |
+
encoder_attention_mask=encoder_attention_mask,
|
1222 |
+
audio_context=audio_context,
|
1223 |
+
**additional_residuals,
|
1224 |
+
)
|
1225 |
+
else:
|
1226 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1227 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1228 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1229 |
+
|
1230 |
+
down_block_res_samples += res_samples
|
1231 |
+
|
1232 |
+
if is_controlnet:
|
1233 |
+
new_down_block_res_samples = ()
|
1234 |
+
|
1235 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1236 |
+
down_block_res_samples, down_block_additional_residuals
|
1237 |
+
):
|
1238 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1239 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1240 |
+
|
1241 |
+
down_block_res_samples = new_down_block_res_samples
|
1242 |
+
|
1243 |
+
# 4. mid
|
1244 |
+
if self.mid_block is not None:
|
1245 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1246 |
+
sample = self.mid_block(
|
1247 |
+
sample,
|
1248 |
+
emb,
|
1249 |
+
encoder_hidden_states=encoder_hidden_states,
|
1250 |
+
attention_mask=attention_mask,
|
1251 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1252 |
+
encoder_attention_mask=encoder_attention_mask,
|
1253 |
+
audio_context=audio_context,
|
1254 |
+
)
|
1255 |
+
else:
|
1256 |
+
sample = self.mid_block(sample, emb)
|
1257 |
+
|
1258 |
+
# To support T2I-Adapter-XL
|
1259 |
+
if (
|
1260 |
+
is_adapter
|
1261 |
+
and len(down_intrablock_additional_residuals) > 0
|
1262 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1263 |
+
):
|
1264 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1265 |
+
|
1266 |
+
if is_controlnet:
|
1267 |
+
sample = sample + mid_block_additional_residual
|
1268 |
+
|
1269 |
+
# 5. up
|
1270 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1271 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1272 |
+
|
1273 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1274 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1275 |
+
|
1276 |
+
# if we have not reached the final block and need to forward the
|
1277 |
+
# upsample size, we do it here
|
1278 |
+
if not is_final_block and forward_upsample_size:
|
1279 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1280 |
+
|
1281 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1282 |
+
sample = upsample_block(
|
1283 |
+
hidden_states=sample,
|
1284 |
+
temb=emb,
|
1285 |
+
res_hidden_states_tuple=res_samples,
|
1286 |
+
encoder_hidden_states=encoder_hidden_states,
|
1287 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1288 |
+
upsample_size=upsample_size,
|
1289 |
+
attention_mask=attention_mask,
|
1290 |
+
encoder_attention_mask=encoder_attention_mask,
|
1291 |
+
audio_context=audio_context,
|
1292 |
+
)
|
1293 |
+
else:
|
1294 |
+
sample = upsample_block(
|
1295 |
+
hidden_states=sample,
|
1296 |
+
temb=emb,
|
1297 |
+
res_hidden_states_tuple=res_samples,
|
1298 |
+
upsample_size=upsample_size,
|
1299 |
+
)
|
1300 |
+
|
1301 |
+
# 6. post-process
|
1302 |
+
if self.conv_norm_out:
|
1303 |
+
sample = self.conv_norm_out(sample)
|
1304 |
+
sample = self.conv_act(sample)
|
1305 |
+
sample = self.conv_out(sample)
|
1306 |
+
|
1307 |
+
if USE_PEFT_BACKEND:
|
1308 |
+
# remove `lora_scale` from each PEFT layer
|
1309 |
+
unscale_lora_layers(self, lora_scale)
|
1310 |
+
|
1311 |
+
if not return_dict:
|
1312 |
+
return (sample,)
|
1313 |
+
|
1314 |
+
return UNet2DConditionOutput(sample=sample)
|
unet_2d_blocks_custom.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|